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Abstract

Suppose we observe a realization of size n of a Gaussian stationary sequence and we estimate
8¢, a functional of the spectral density, by 3. For example, @y and 6, might be the true and
the empirical rate at which the process crosses a certain level. It is natural to ask: (i) can the
sampling distribution of , be consistently estimated? and (ii), can a better estimator of 8;
than §, be constructed on the basis of §,?

In this paper we describe approaches which allow answering both questions affirmatively in
certain situations. The approach is based on resampling the data, i.e., using the original data to
specify a distribution from which new samples are drawn. In the first problem the data induce
an estimate of the spectral density f, and the sampling distribution of §; under f, is used to
estimate that under f. We establish results for estimators of well-behaved functions of linear
functionals of the spectral density. In the second problem we pretend the data are circular so
that the periodogram of the data is a sufficient statistic and thus the conditional expectation of
é, is a better estimator. If the data are not really circular, this mechanism introduces bias but
the reduction in variance may be substantial enough to reduce the mean square error.




—

CONTENTS 3
A Auxiliary results and proofs 41
A1 Chapter 2 . . . . . . . e e 41
A2 Chapter3 . . . . . . . .. 48
A.2.1 Auxiliaty definitions and results . . . . . ... ... L. 18

A.2.2 Proofs for Chapter 3 . . . . . . ... ... L L 49

A.3 Chapter4 . . . . . . . . . e 51
A.3.1 Distances betweenspectra . . . . . . . . ... ... ... L. 51

A.3.2 Proofs for Chapter4 . . . . . .. ... . ... ... ... ... ... 52

A4 Chapter T . . . . . . . . . . e e 55




g~ vTer— > "~

DA e achibate. o] ) ad

»

Chapter 1

Introduction

1.1 Setup and problems

Suppose we observe X,;"l ~ N(0,Z,), a realization of size n of a Gaussian stationary process
{X¢}>=,. Since the process is stationary I, is a Toeplits matrix and completely specified for
all n by a spectrum f, and we may write X3! ~ N(0, f). Furthermore, suppose we estimate
8; = 6(f), some functional of f, by procedure 6.

In this paper we explore the use of resampling methods in connection with two problems:

1. consistent estimation of the sampling distribution of 4, and

2. using 6, to find a better estimator of ;.

1.2 General strategy

The basic strategy behind our approach to each of these problems is based on resampling the
observed data, i.e., using the observed data X7 ~! to specify a distribution from which we then
draw samples Y’ =1 which are sometimes called bootstrap samples.

There are two steps implicit in this approach: the first defines the procedure through which
the original data specify the distribution from which new samples are to be drawn; the second
indicates how these bootstrap samples are to be used to solve each of the two problems at hand,
e.g., using Monte-Carlo to approximate distributions and their moments.

1.2.1 Strategy for problem 1
For the first problem we proceed as follows:
1. Use X(','" to estimate the spectrum f by f,. via some procedure.

2. Draw Yg~! ~ N(0, fa) and calculate 5, for each sample
3. Take the Monte-Carlo approximation of the (conditional on X7 ') sampling distribution
of é, as the estimate of the sampling distribution of 6, .
1.2.2 Strategy for problem 2
For the second problem we proceed as follows:

1. Use X2™! to construct a sufficient statistic S, = S(Xg™").
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2. Draw samples Y~ ~ £(X3!|S,) and calculate 8, for each

3. Approximate 5; = E(é,|5,.) by the average of the éy‘s.

1.3 Results for problem 1
In otder to be able to give fairly exhaustive coverage to problem 1 we will restrict attention to

estimates of linear functionals of the spectral density and well-behaved functions of these.

1.3.1 Linear functionals

Linear functionals of a spectrum f are of the form
8; = /9(u)f(u)dw

and they can be efficiently estimated (cf., e.g., Hasminskii and Ibragimov, 1986) by the corre-
sponding linear functional of the periodogram IZ of the data

6, = /G(w)I:(w)du.
For example, covariances and their MLE’s (under the Toeplitz model) are of this form.

1.3.2 Results for linear functionals

It simplifies matters to estimate the sampling distribution of U, = \/n(§, —6;) rather than that
of 6,. As mentioned above, we first use X3! to estimate the spectrum f by f, and then draw
samples Y ~! from L(YQ ! |X3™1) = N(0, fa). If we let Vo = /n(f, — 8;.), we can then use
L(ValX3™') to estimate £(Us,). ) )

The device used in deriving our results is to construct U, and V,, on the same probability
space with the property that £(U,) = £(Ua) and L£(V,| X2 ') = C(ValX37h).

Our main result, Corollary 3.5, establishes that, under regularity conditions on 6, £, and 6,

dp(L(Un), L(ValXg™")) = 0p(1),

i.e., the Prohorov distance between the distribution of interest and its estimate is small with
high probability. i )

The proof of this result is an easy consequence of Theorem 3.4 which establishes U, — V,, =
0y (1) under the following regularity conditions:

1. f, @ satisfy a Lipschits condition.

2. 11f = fall} = J3 1£(w) = fa(w)Pdw = 0p(1)

3. P(inf, fa(w) > 0) — 1

4. sup,, fa(w) = Op(1)

5. sup,, f,“l(w) = 0,(1)

6. sup, |f4(w)|? = op(n/log’ n).
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We then extend these results to differentiable functions A of linear functionals in Theorem
3.8 and Corollary 3.9, in which case the variables of interest are

Ul =vm (h(é,,,...,é,,) - h(B11, .., 61))

and

Va=vn (h(éylw-wéw’) - h(ef..l""’ef»?)) )

1.3.3 Spectrum estimation

The motivating idea for assessing sampling distributions is a practical one: we would like to use
this method in real-life applications, for example, to estimate the sampling bias and variability
of statistics of interest. We mentioned in the previous section that this resampling strategy will
only work if the estimate of the spectral density used to generate the bootstrap samples satisfies
certain properties.

In our simulations we implemented the spectrum estimation technique derived in Wahba
(1980) which estimates the logarithm of the spectral density by smoothing the log of the peri-
odogram.

We chose Wahba's procedure for two reasons: (i) there is an easily programmable objective
criterion for choosing the amount of smoothing which makes the procedure automatic and thus
suitable for large simulation studies; (ii) the degree of differentiability of the estimate can be
controlled.

The amount of smoothing and the degree of differentiability of Wahba's estimate are con-
trolled by two tuning parameters. Choosing the value of the smoothing parameters is essentially
a choic» between controlling bias or controlling variability (and hence regularity properties) of
the resulting estimate of the spectral density.

Specifically, let A and m denote the two tuning parameters: A controls the amount of smooth-
ing and m represents the number of continuous derivatives of the estimate. Let h be the log of
the spectral density and A, be its estimate so that f, = exp(ft,,) is the estimate of f. Then, by
letting A be a function of the sample sise n, i.c., picking a sequence A, = A(n), which decays
to 0 slowly enough, certain regularity properties of h, (and hence of fa) can be controlled. In
particular, we establish that if A\, = O(n~") and 0 < r < m/3, then

1. sup, |Ap(w)| = 0,(1) which implies
(a) sup, fa(w) = Op(1) and
(b) sup, f7'(w) = Op(1)
2. sup Al (w)|? = Op(n'/?) which, together with condtion (1.a), implies sup|fi(w)® =
0,(n!/3).
3. E [|h(w) - ho(w)|?dw = o(1) which, together with condition (1.a), implies Jif(w) -
fa(w)Pdw = ap(1).

These properties can be seen to be sufficient for the conditions described at the end of the previ-
ous section to hold, and thus enable the results of this paper to obtain in practical applications
whete the parameter of interest can be expressed as a well-behaved function of linear functionals
of the spectral density.
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1.3.4 Applications

We apply this resampling methodology to the probl=m of estimating the first correlation p of
the process by the sample correlation p = 3~ X, X1/ X2. Since p and j can be expressed as
ratios of linear functionals of the spectral density and periodogram respectively, the theoretical
results obtained apply in this case.

The simulations studies indicate that the estimate of variability obtained by ~ur method are
roughly as good as the asymptotic approximations, and much better when estimating bias, even
though the asymptotics were calculated assuming complete knowledge of the model generating
the data.

1.4 Improved estimators

Suppose we observe a realization of size n, X3 ', of a Gaussian stationary process with spectral
density f, and we estimate a general functional 8; = (f) by b,.

1.4.1 Circular process

Under the assumption that the process is circular the periodogram IZ is a sufficient statistic
and we can consider the estimator §; = E {é,l[:} which has smaller risk than 6, under convex
loss by the Rao-Blackwell Theorem.

Under th~ assumption of circularity it is easy to calculate §; since, conditional on the pe-
riodogram, the first half of the discrete Fourier transform of the data has fixed amplitude and
independent uniform U({0,1) phases. Thus, by sampling iid U(0,1) phases we can obtain new
samples of the discrete Fourier transform (DFT) of the original data with the same conditional
(given the periodogram) distribution. Taking inverse DFT we can obtain new samples of data
Yy !, calculate 8y for each, and average to obtain an approximation to é:.

1.4.2 Non-circular process

If the original process is not circular the periodogram is not a sufficient statistic but we may
pretend it is and resample as in the circular case to obtain é;. However, this mechanism will in
general introduce bias, i.e., Eé; # Eé,, but the amount of bias is often neglibible compared to
the reduction in variance so that § has lower mean square error than 6,.

1.4.3 Applications

The motivating idea is to obtain more efficient estimators in situations where efficient estimators,
e.g., MLE, cannot be calculated easily but there exist inefficient estimators. This happens, for
example, in the context of estimating the crossing rate of level a of a Gaussian stationary process.
In this case the MLE (undet the Toeplits model) can only be evaluated in the case a = 0 in
which case it is given by .5 — x~! arcsin(g), where 5 is the first sample correlation coefficient.
On the other hand, the empirical crossing rate &g which simply counts the number of crossings
and divides by n — 1, can be calculated for all a.

The simulations indicate that, for the case a = 0, the MSE of E {&,‘,’,II,’,} is roughly equal
to that of the MLE, and much smaller than that of d;:. Furthermore, it is worth mentioning

again that our procedure has the the advantage over the MLE that it carn be calculated for all
a while the MLE is imited to the case a = 0.
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1.5 Algorithms

Resampling plans are by nature computer intensive. For this reason, one of the emphases of
this research was to implement algorithms which could be driven by the FFT. To generate n-
long realizations of stationary Gaussian processes with covariance matrix T, we adapted an
algorithm to simulate circular processes of length 2n due to Jonas (1984) whose n-long segments
have covariance ¥,,.

1.6 Related research

The idea of using the data to specify a distribution from which to resample was advanced, in
the iid case, by Efron (1979). The idea of resampling Gaussian stationary process with spectral
density specified by the data to study sampling bias and variability was set forth in Ramos
(1984). Subsequently Hurvich and Zeger (1986) and Stine (1986) have come up with similar
schemes for different applications. In related research, methods to estimate variability in the
context of time-dependent observations have been suggested by Carlstein (1986) who estimates
it on the basis of subseries values and by Freedman and Peters (1984) who, in the original
spirit of Efton (1979), suggest fitting 8 long autoregression and generating new psuedo-series by
resampling the residuals.

1.7 Contents

The paper is organized in the following manner:

1.7.1 Chapter 2

In this chapter the background and numerous auxiliary results are presented. Of particular
interest are results concerning the magnitude of the covariance between periodogram ordinates
and their logs, Lemmas 2.16 and 2.17.

1.7.2 Chapter 3

In this chapter we establish the results concerning linear functionals. The relevant results are
Corollaries 3.5 and 3.9 which establish tha. the bootstrap distribution is close, in probability,
to the unknown sampling distribution of the estimator.

1.7.3 Chapter 4

In this chapter we establish the properties of Wahba's (1980) procedure. The main results are
Lemmas 4.3, 4.4, 4.8 and 4.7 which ~stablish regularity properties and convergence in L; norm
to 0 of the integrated mean square error.

1.7.4 Chapter 5

In this chapter we describe the Monte-Carlo algorithm for simulating realisations from Gaussian
stationary processes.
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1.7.5 Chapter 6

In this chapter we describe applications of our resampling methodolgy to the problem of esti-
mating the sampling bias and variability of the first sample correlation under the AR(1) and
MA(1) models and result of simulations.

1.7.6 Chapter 7

In this chapter we examine the problem of finding better estimators by resampling. An applica-
tion to estimating the crossing rate of a certain level is discussed and results of simulations are
presented.

1.7.7 Appendix A
All proof of results are given in the Appendix.




Chapter 2

Background

In this chapter we state the basic definitions, assumptions, and properties of stationary Gaussian
processes and their spectra; we also define the discrete Fourier transform (DFT) and the peri-
odogram, investigate their distributions and moments, and review some asymptotics. Finally,
we briefly discuss circulants with two examples which will be useful later on.

2.1 Gaussian stationary processes

In this section we introduce Gaussian stationary process and investigate properties of their
covariance structure and their spectra. We also describe a representation of such processes due
to Cramer.

2.1.1 Covariance structure

In what follows let {X:}{2 _., (or more simply {X:}) denote a real and discrete time series,
that is, a random sequence ..., X_y, Xo, X1,... . In this paper we will only be concerned with
time series which are stationary and Gaussian. Intuitively speaking, stationarity means that the
distribution of the X’s does not change with time; formally:

Definition 2.1 {X,} is a Gaussian stationary sequence if all its finite dimensional distributions
are multivarmate r.ormal, E(X,) = p, and cov(X, Xy4,) = ¢,, for allt, s.

Remark: For convenience and without undue loss of generality, we will assume throughout this
paper that y = 0.

Stationarity implies that if X3 ™' = (Xo,..., Xn_1)' is a realization of sise n of a stationary
Gaussian process with covariance sequence {c,}, its covariance matrix Tn is Toeplitz with first
IOW Coy...,Cn-1. Recall that T, = (oy4) is Toeplits whenever ;i = oy;_a, ie., the value
of any entry is = function only of its distance to the main diagonal. Thus, it is easy to see
that the first row (or column) defines any Toeplits I, and thus it is convenient to write &, =
T(co,---,cn-1) where T maps the column vector (o, ...,cn—1) to the Toeplits matrix with first
tow {(Co,...,Cn-1)- An easy consequence of definition 2.1 is that, for all n and s, Xp-ite o
N(0,Z,) wherte £, = T(¢o,...,Cn-1).

2.1.2 Spectrum

A dual representation of the covariance structure of a stationary process is given by the spectrum.
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Definition 2.2 If -7 _ |c,| < oo the spectrum of the process can be defined by

= <]

f(A) = Z c, exp(i2xs)A), (2.1)

=~

for all A.

Assumpiion 2.1 The covariances of all processes considered in this paper satisfy
S, i < oo

The characteristic properties of the spectrum are:

1. f is clearly periodic with period 1 so we can limit the range of A to any interval of unit
length.

2. Since {X,} is teal-valued, ¢, = c_, and hence f(A) = f(—A) which, together with the fact
that f is periodic, implies f is symmetric about 1/2, i.e., f(1/2—z) = f(1/2 + z).

3. f and {c,} are a Fourier transform pair and hence

a+1
<, =/ f(A)exp(~i2xsd)dA. (2.2)
L
for all real a and integer s.
4. Brillinger (1980, p. 24) shows that Definition 2.2 implies f > 0.
Lemma 2.1 [t f > 0, then T(co,...,¢n-1) > 0 for all n.

Remark: The spectrum determines T{cq,...,cq_1) for all n so that we will write X{,"l ~ N(0, f)
to indicate X(;“l ~ N(0,T(coy---+Cn-1))-

Smoothness of the spectrum

It is easily seen from (2.2) that a constant spectrum implies ¢, = 0 for s # 0, i.e., the {X,} are
independent and the process is memoryless. On the other hand, if the spectrum has a sharp
peak near the origin the c,’s will decay slowly and we can think of the process as having a long
memory.

In the next few paragraphs we briefly discuss in what way “smoothness” properties of the
spectrum and conditions on the covariance sequence {c,} are related and state the “smoothness”
conditions we shall impose on the spectra under consideration in this paper.

“Smoothness” of a function f is usually quantified in one of two ways: (i) by properties of
f, namely Lipschits conditions and differentiability, or (ii) properties of the Fourier coefficients
{c,} of f, namely the rate of decay to 0 of {c,}.

Recall the definition of a Lipschits condition:

Definition 2.3 f € Lip(a) whenever there ezists a smallest constant M, , such that

sup |f(w +h) — f(w)| < My q€®

w,|h|<e
foralle > 0.
Remarks:

1. M; o is called the a-modulus of continuity of f.
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2. We will write M, for M, ;.

It is clear from defaition 2.2 that ) |c,| < oo implies sup, f(z) < oo, although the converse
does not necessarily hold. In general, conditions on how quickly the sequence {c,} converges to
zero, differentiability of f, and Lipschits conditions are related in the following mananer:

Lemma 2.2 If f{w) = Y52 __ c, exp(i2xsw) then

1I=—-

Y lsltle,] < 00 => sup |fM)(w)] < co = f*~ Y € Lip(1)

for k > 1, and Assumption 2.1 implies that f is continous.

Assumption 2.2 In this paper we shall only consider processes for which the spectrum f €
Lip(1) and f > 0.

2.1.3 Cramer representation

Throughout this paper we will appeal to a representation of Gaussian stationary processes due
to Cramer. Its importance lies in the fact that it expresses the values of the process as a simple
function of the spectrum and is thus useful in establishing results which depend on properties
of the spectrum.

Theorem 2.3 (Cramer) If {X:} ~ N(0, f) we can write
1/2
X :/ exp(i2xtw) F(w)dZ(w) (2.3)
-2

where F is any integrable complez function such that F(w) = F(—w) and |F(w)|? = f(w), and
Z(w) 1s a continuous and complez-valued process with independent Gaussian increments having
the following properties:

1. EdZ(w) =0 for allw,

2. EdZ(w)dZ(A) = 6, _rdw,
3. EdZ(w)dZ(w) =0,

4. dZ(w) = dZ(-w).

where 8, is Kronecker’s §, i.e., §, =1 if 2 = 0 and 0 otherwise.

Remarks:

1. The last property ensures the process is real-valued.
2. In the engineering literature F is called a transfer function.

3. If f € Lip(1) it will be convenient to take the transfer function F € Lip(1) too. In other
words, let F(w) = (/f(w)exp(i8(w)) where 8§ € Lip(1). For our purposes we rarely need
to consider cases where 6(w) # 0.

2.2 The main construction (MC)

In order to establish the main results of this paper it is necessary to construct two processes
{X:} ~ N(0, f) and {Y;} ~ N(0,g) defined on the same probability space. These two processes
are defined in such a way that they are to be “close” (in a sense to be made precise below) to
each other, subject to the restriction {X,} ~ N(0, f) and {Y,} ~ N(0,¢).

First we state the assumption on the transfer functions:

Assumption 2.8 Let F,G € Lip(1) be measurable, complez-valued, non-vanishing functions
such that F{w) = F(-w), |F(w)|? = f(w), G(w) = G(-w), and |G(w)? = g(w).
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The main construction: Define two processes { X} and {¥;} by

1/3

X, =/ exp(i2%tw) F(w)dZ(w) (2.4)

~1/2

and 2
Y, :/ exp(i27tw)G(w)dZ(w) (2.5)

~1/3

for all ¢, where Z(w) is as in Theorem 2.3, and F and G satisfy Assumption 2.3. We shall
henceforth refer to this construction as the Main Construction (MC).

Notice that, under the conditions of the MC, for given spectra f and g the corresponding
transfer functions F and G are defined up to amplitude but not phase so that different choices
of phase functions will lead to processes which are more or less “close™ to each other. If we
measure “closeness” by E|X, — Y;|?, it is then straightforward to show that

Lemma 2.4 If {X,} and {Y.} are given by the MC, then
B~ = [ 1F(@) - 6P

for all t, and is minimized when the phase functions of F and G are the same, in which case

ElX - Yo = [|VFw) - Vg(w)idw.

2.3 The DFT and the periodogram

In this section we define the discrete Fourier transform (DFT) and the periodogram associated
with a realisation X5 ~!. We also examine their sampling properties when X3! ~ N(0, f),
f € Lip(1).
2 3.1 Definition of the DFT and periodogram
Definition 2.4 Let JZ(w) = n~V/3 30"} X,e '3t denote the discrete Fourier transform of
X3t
Definition 2.8 Let IZ(w) = |JZ(w)|? be the associated periodogram.
Remerks:

1. J3(w), IZ(w) are periodic with period 1.

2. If X3! is real-valued it follows that JZ(w) = JZ(1 — w). Hence IZ(w) = I%(1 — w) and
R(1/2+w) =I3(1/2 - w).

We will write J2 without the argument w to denote the column vector with entries J3(k/n),
k=0,...,n-1, and similarly IZ is the vector whose components are [J(k/n})|>, k =0,...,n-1.
These are just the DFT and the periodogram evaluated at the set of Fourier frequencies k/n,
k=0,...,n— 1. We will refer to these vectors simply as the DFT and the periodogram.
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2.3.2 Convolution and kernels

Since many of the results we derive below are expressed in terms of convolutions of a function
f and a kernel, either Fejer’s or Dirichlet’s, we state the the relevant definitions and properties
below. In this section f and g denote arbitrary periodic functions (not only spectral densities).

Definition 2.8 If f and g are periodic define the convolution f«g of f and g by

l+4a l+a
feglz) = / f(z - t)a(t)dt = / F(t)g(z - t)dt.

Remarks:
1. We will usually takea =0 ora = ~1/2.

2. Notice that if either f of g are differentiable, their convolution is differentiable and
1 1
(fes@) = [ £ =gt = [ f(0g(= - ar.
o o

In this paper we will use the following notation: let L, denote the space of periodic (almost
everywhere) functions which are Lebesgue integrable to the p** power with norm

12 1/p
I£ll, = { / . If(w)l’dw} .

i.e., f € L, if, and only if, ||fll, < co. If f and g are in L, we will occasionally write d,(f,9) =
ILf —gllp-

Lemma 2.5 Let f,g€ Ly, 9> 0, and ||g}|; =1. Then

inf f(w) < inf f + g(w) < sup f + 9(w) < sup f(w).
In the following lemma S denotes either (i), the set of periodic continuous functions with
sup norm, or (ii), L,.

Lemma 3.8 (Butzer and Nessel, 1971). Let f € Sandge€ L. Then feg € S and||f+glls <
I fiisitglls-

Remark: If ||jg||; = 1 we can apply Lemma 2.6 to the derivatives of f to show that the result of
convolving f and ¢ is smoother than f.
We now state definitions and properties of the Dirichlet and the Fejer kernels.

Definition 2.7 Forn > 0 let
sin(nx})

Da(3) = sin(xA)

denote Dirichlet’s kernel and let

denote Fejer’s Kernel.

ittt
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These kernels arise naturally when approximating f by finite “sums” of its Fourier coefficients
{cx}. Here the word “sum™ may refer to different types of sums, e.g. Cesaro. Each of these
“sums” can be expressed as the convolution of f with a particular kernel.

The following are standard results from approximation theory (cf., e.g., Butzer and Nessel,
1971).

Lemma 2.7 [Butzer and Nessel, 1971) If D, and K, are the Dirichlet and Fejer kernels re-

spectively, then
n

Z exp(i2xkA) = Dani1(A), (2.6)

e n-1
exp(~im(n — 1)4) ) exp(i2xkA) = Da(A) (2.7)

and . =
.:z_:.. (1 - %-‘) exp(i2xkA) = Ka(A). (2.8)

Remark: Since K, > 0, Lemma 2.7 implies ||K,|[1 = 1.
Lemma 2.8 If f € Ly and cx = f, f(A) exp(—i2xs)) dA, then

Z ce exp(i2nkz) = Dan 1 = f(1)

k=-n

and
. |

Y (1 - ?) exp(i2xkz) = K, * f(z).

h=-n

Lemma 2.9 (Butzer and Nessel, 1971) If f € Lip(1), then
sup (K, * f(w) — f(w)] = M;O(logn/n).
uniformly in f.

The next is an auxiliary lemma we will use often.

Lemma 2.10 If D, is the Dirichlet kernel, then
a+1
/ Dp(z — t)Dn(z — 8)dz = Dp(s — t).
for all a. If in addition f € Lip(1) is symmetric and periodic, then
a+1
| 15(2) = £} Da(z ~ )Da(z - s)de = M;O(log ).
uniformly in f and hence

/.H f(z2)Dn(z = t)Dna(z — s)dz = Da(s — t)f(s) + M;O(log n).

uniformly in f for all s,t, and a.
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2.3.3 Distribution and moments of the DFT

Let F, denote the matrix with entries n'”’exp(—ithk/n), Jk=0,...,n—1. F, is called the
Fourier transform matrix since it projects a vector onto its DFT, eg., JZ = F,X7~'. Notice
that F,, is symmetric and unitary, i.e. F;! = F,. F, should not be confused with F, the
transfer function.

If we write F,, = C, — iS,, for real-valued matrices C, and S,, we can establish the following
result concerning the distribution of J3:

Lemma 2.11 If JZ = F, X3! and X3! ~ N(0,L,), then

RJ: ~ N 0 C'IE'UC" "annsn

QJz "\ =SaZaChn  S.I.Sn '
and E|JZ(w)|? = EIZ(w) = Ko » f(w) for all w.

The following lemma gives the variances and covariances between real and imaginary parts
of the DFT.

Lemma 2.12 If X3! ~ N(0, f) for f € Lip(1) and 0 <1, m < [n/2], then
2ER{JS(I/n)}R{I3(m/n)} = 8m_1(1 + 61 + 8a/3_1)Kn + f(m/n) + M;O(logn/n),

2ES{JS(I/n)}S{Ji(m/n)} = bm_i(1 — 81 — 8,/3_1)Kn * f{m/n) + M;O(logn/n),

and
ER{IZ(I/n)}{J5(m/n)} = (1 — 6 )(1 = 8p_m,;2) M;O(logn/n)

uniformly in f € Lip(1).

2.3.4 Distribution and moments of the periodogram
Distribution of periodogram ordinates

We saw above (Lemmas 2.11 and 2.12) that the real and imaginary parts of JZ(k/n) have
bivariate normal distribution with variance approximately proportional to K, « f(k/n)/2 and
correlation p = M;O(logn/n). Lemma 2.11 implies that twice the periodogram ordinate IZ(k/n)
is distributed like WK, » f(k/n) where W = X2 + (pX + /1 - p3Y)? and X and Y are iid
N(0, 1) variates. The following lemma establishes an alternate representation for W which will
make manipulations easier.

Lemma 3.18 If W = X? + (pX + \/1-p2Y)? and X and Y are iid N(0,1), then W is
distributed as

w

(14 p)U7 + (1 - p)U3
UvG_yus
2 2 1 3
(U2 + U?) (1 P +U;)
(UF+U3) (1 +p8)

for Uy, U; 4id N(0,1). The two factors on the r.h.s. are independent and |0] < 1.
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Covariance between periodogram ordinates

Below we establish the main result of this section which calculates the covariance between
periodogram ordinates of realizations Xg ! and Yy~ ':

Lemma 2.14 If X3! and Y3~! are given by the MC with transfer functions F and G, then

2
cov(IZ(A), I¥(n)) = n7?

[ F@IT@IDuw - 0D - uide

2
+ n~?

f F(w)G(@) Da(w — A) Da(w + )de

In the case F = G, i.e.,, X; = Y;, lemma 2.14 leads t~ the following known result (cf., eg.,
Haszminski and Ibragimov, 1986):

Corollary 2.15 If X7~ ' ~ N(0, f), then

3
cov(IE(A), IZ(n)) = n7? l/f(w)D,.(w — A) Dy (w — p)dw

2
+ n?

[ £@1Duo - )P + pid (29)

It is well known that the components of I7(k/n), k = 0,...,[n/2] become increasingly
uncorrelated as n — oco. Since spectral estimates usually depend only on these components, the
properties of these estimates may depend on the rate at which the correlation between these
components decays to 0. For this reason, it is useful to evaluate {2.9) explicitly when A and u
are different Fourier frequencies. We then have the following

Lemma 2.16 If X3! ~ N(0, f), f € Lip(1), and 0 <1 < m < [n/2), then
cov(I(1/n), IE(m/n)) = M}O(log n/n)*.
uniformly in f.

We conclude this section with a result on the magnitude of the covariance between the
logs of periodogram ordinates. This result will prove useful when establishing properties of
the particular spectral estimate (Wahba, 1980) used in our simulations since this procedure
essentially amounts to taking a weighted average of the log of periodogram ordinates.

Lemma 2.17 If X3! satisfies the conditions of Definition 2.9 and 0 < I < m < [n/2], then
cov(log IF(I/n),log IZ(m/n)) = M}O(log n/n)?. (2.10)

uniformly in f.

2.4 Circulants

In this section we introduce circulants, describe some of their properties, and discuss in some
detail two examples of circulants which will appear later on.

Definition 2.8 A matriz TS = (oa;), k,j = 0,...,n — 1, is a circulant of dimension n if
oy = 0°(k — j) for some function ¢¢ with perod n.
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Recall (cf., e.g., Brillinger, 1979) that the eigenvalues of TS are given by
n-1
Af =Y of(k) exp(—i2xkj/n),
k=0

j=0,..,n -1, and the corresponding right-hand eigenvectors are simply the rows (or columns)
of the Fourier transform matrix F,,. In fact, it is well known (cf. e.g. Brillinger, 1979) that T¢
is a circulant if, and only if, it can be written as

T8 = FaALF, (2.11)

where Af is diagonal with entries Aj. The importance of (2.11) is that the eigenvectors, the
columns of F,, are the same for all circulants of dimension n. Notice that whenever ] and A¢
are both real, T is necessarily symmetric (and hence Toeplits) and Tf = FL AL F,.

It is easy to see that, given the eigenvalues, we can obtain the entries of T by taking the
inverse DFT

n-1
o (k) = % T X exp(i2njk/n). (2.12)
1=0

2.4.1 Example 1: A circulant approximation to I,

Let X7~! be a realisation of size n from N(0, f), f > 0, and let T, denote its covariance matrix,
ie., X",'" ~ N(0,Z,), Z4 = T(coy.--1¢n_y). If welet JZ = F, X denote its DFT, it follows
from Lemma 2.11 that

EJETET = FoSuFo = A,
so that _ _

Lo = FRAF, = F;Aﬂit'
where A, is not necessarily diagonal or real. However,

Lemma 2.18 The diagonal entries of A, are given by

n-1
Aj = ) c(l-ltl/n) exp(—i2xtj/n) (2.13)
t=-n+4+1
n-1
= Y (ce(1 = [t]/n) + ca_¢|t]/n) exp(—i2xtj/n) (2.14)
t=0

Remark: The A; = K+ f(j/n) are the Cesaro means of f evaluated at the Fourier frequencies
j/n,3=0,....,n-1L

In order to construct a circulant approximation to I,, define A = diag(A,) to be the
diagonal matrix whose entries coincide with the entries in the main diagonal of A, and let

TE = FoAST, = F AL F,.

Lemma 2.12 shows that the off-diagonal entries of A, are O(log n/n) so that L is a circulant
approximation to T,.

By construction it is clear that L is a circulant since it is in the form of (2.11). The entries
of AL are given by (2.14) and hence the inversion formula (2.12) gives

c§ =ca(l —k/n) +ca_ak/n. (2.15)

for k = 0,...,n — 1. Notice that the approximation is better for entries closer to the main
diagonal.

= - ——
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2.4.2 Example 2: “Circularizing” processes

Let f(w) =3, c, exp(i2xws) be a spectrum and consider the following 2n x 2n circulant

;n = T(COv-"nCﬂ—lvoycﬁ—lvu -|Cl)'
Lemma 2.19 If 55, = FanAS, Fia, then AS, is diagonal with entries

n-1

Aj = Z ce exp(i2xtj/2n)

t=—-n+1
forj =0,...,2n - 1.

Remarks:

16

1. The eigenvalues A; = Djns1 * f(7/2n) are the partial sum of the Fourier series of f

evaluated at the Fourier frequencies j/2n, for § = 0,...,2n — 1. Since the Dirichlet kernel
is not positive everywhere it may be that some A{’s are negative even when f > 0, and
hence that g, is not necessarily positive definite.

. If A, > 0 for all j, then Ef, is positive definite and hence is the covariance matrix of

a circular process with period 2n. This process has the property that any n adjacent

components of 4 realization are distributed N(0,L,) where £, < T'(co,...,cn-1)-

The last property will be useful for fast simuiation of realisations from N(0,L,) since the FFT
can be used to generate realizations of processes which have circulant covariance matrices. For
this reason, it will be important that for large enough n, LS, be positive definite, i.c., that it be

a8 covariance matrix. This is guaranteed by the following

Lemma 2.20 If Y [ck| < o0 and f > 0, then there ezists N such that TS is positive definite

forn> N.
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Chapter 3

Linear functionals of the
spectrum

3.1 Introduction

Recall the motivating problem stated in the introduction: upon observing a realisation X3~ ' ~
N(0, f), f unknown, procedure 6, is used to estimate a functional 6, of f and it is of interest
to assess the sampling distribution of 4, .

Oue possible solution to this problem is the following: use some procedure f, to estimate f
and, by simulating many realisations from a process {¥;} whose conditional distribution given
fa is N(0, f,), determine the (conditional) sampling distribution of é, and use it to estimate
that of 6. An gbvious question is: under what conditions on 6, é, f, and f.., can the sampling
distribution of 8; be consistently estimated by the {conditional) sampling distribution of é,?

In this chapter we investigate the answer to this question in the case where the parameter of
interest is a linear functional of the spectrum and its estimate is the corresponding functional
of the periodogram. The main result in this chapter, Corollary 3.5, establishes that in this case,
under certain conditions on f, and 8y, £(d,) and L(fy1X31) are close with high probability.
This result is then extended to well-behaved functions of linear functionals in Corollary 3.9. For
example, we shall be interested in assessing the sampling distribution of estimators of normalised
linear functionals such as the ratio of two linear functionals.

Our results will, of course, depend on properties of the particular estimator of the spectral
density used. In Chapter 4 we show that the estimator of the spectral density (Wahba, 1980)
which we use in our simulations, will have the required properties whenever the smoothing
parameter is properly chosen.

Some of the theory required for establishing these results can be found in §A.2.1.

3.2 Sampling distribution of estimators of linear func-
tionals

3.2.1 EfHicient estimators

Assume we observe a realisation X! ~ N(0, f), f unknown, and we estimate the parameter

8 = /G(W)f(w)du (3.1)

17
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by
b = [o)r ) (3.2)

for a real and measurable function 8. There is no loss of generality in assuming that 8 is even
and periodic and we shall hereafter do so.

Linear functionals include a wide class of par.  cters, e.g., covariances and spectral moments.
In addition, they have nice properties: Hasminskii and Ibragimov (1986) establish (under weaker
conditions on f and @ than those we assume in this paper) that 4, is asymptotically efficient,
and

£ (VA@. - 8y)) — £(©) (3.3)
where U ~ N (0,2 [ 8(w)? f(w)?dw).

3.2.2 Resampling strategy

We saw above that /n(f, - 6;) has a limiting distribution. For this reason it will be easier to
deal with the sampling distribution of

U = V(6. — 6;), (3.4)

rather than that of 4,. K
The idea behind our resampling methodology is to estimate f by f, and estimate the distri-
bution of U, by the conditional distribution given f, = g of

Va = Vn(é, - 8,), (3.5)

where C(Y? ' [X2™1) = N(0, f,).

3.2.3 Results

The results of this section are obtained by showing that the.re exist random_va.risbles U, and
Va which aze close with high probability and such that C(U1X3Y) = £(Ua) = L(Ua) and
L(ValX3~1) = L(ValX3™?), ice., Un — Vi = 0,(1). Corollary 3.5 then establishes

1. dp (c(v,.|x3-‘),c(v,.|x3—l)) = 0p(1) and

2. dp (c(U), c(ff,.lxg-l)) = 0,(1).

where dp denoctes the Prohorov distance (cf., e.g., §A.2.1). In other words, the distribution of
U, is approximated by the “bootstrap” distribution.

In the next section we construct these random variables and show that they indeed have
the desired properties. To do so, we proceed in stages: first, we assume fa=gis given and
deterministic and use the MC to construct processes {X;} ~ N(0, f) and {¥;} ~ N(0,¢) and
define U, and V, as in (3.4) and (3.5); second, we bound the distance between the distributions
of U, and V, in terms of properties of f and g; third, we extend the results to account for the
fact that f, is really a random variable by determining regularity conditions on fa so that the
required properties of deterministic g hold for random fa with high probability.
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3.3 Distances between distributions of estimators

3.3.1 Deterministic case

If f, = ¢ is deterministic, the basic idea is to study how “close” the distributions of U, and
V.. are as a function of how “close” the respective spectra f and g are. It turns out (Theorem
3.3) that if the two processes {X.} ~ N(0, f) and {Y;} ~ N(0, g) are given by the MC and we
measure the distance between the distributions of U, and V, by E|U, — V,|, this distance is
essentially bounded by the L, distance between f and g.

Before we go on we need to establish two auxiliary results. The first one concerns the bias
of 8,.

Lemma 3.1 If 6 is bounded, 6, is given by (5.2), f € Lip(1), and Xg~' ~ N(0, f), then
E(6, — 8;) = M; O(log n/n)
uniformly in f.

The second one concems the covariance between 8, and ¢, = [ ¢(w)I¥(w)dw, an estimate

of ¢ = f¢("‘
Lemma 3.2 If X,')"l ~ N(0, f) and Yo"’l ~ N(0,g) are given by the MC with transfer func-
tions F and G, and 8,9 € Lip(1) are even and periodic, then

ncov(@,,d;,) = 2/0(w)¢(w)f(w)g(w)du + Mz sup |FG|O(log n/n) + sup |£910(log? n/n)

uniformly in F and G.

We are now able to establish the establish the main result of this section, Theorem 3.3, which
bounds the distance between the distribution of U, and V,, by E|{U, —~ V,,| where U, and V, are
induced by processes {X;} and {Y;} given by the MC.

Theorem 3.8 If X7~ ' ~ N(0,f) and Y;™' ~ N(0,g) are given by the MC with transfer
functions F and G, 8 € Lip(l) is even and periodic, and U, and V,, are given by (3.4} and
(3.5), then

EYNUny ~Val < E|U,-Va)?
2 [ 6P 11(0) - o(0) e (3.6)
+M 5 sup [FG|O(log n/n) + (sup |fg| + M} + M})O(log’ n/n)

uniformly in F and G.

This tesult will enable us to show that U, — V,, = 0,(1) when g is no longer deterministic but
a consistent (in integrated mean square error) estimate fa with certain regularity properties.
Consistency ensures the integral in (3.6) to be 0,(1) while the regularity conditions ensure the
remaining terms in (3.6) to be op(1).

3.3.2 Random case

Extending the results of the previous section to the random case where fu is random will follow
upon showing that the estimate of the spectral density based on the original sample X5~ 1 and
the corresponding estimate of the transfer function satisfy certain properties which we \nll now
explote.
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Let fa denote the estimate of the spectral density which the observed data X2~ ! induce.
We will use the MC with F = /F, G = {f.}'/? and Z(w) independent of X7 ™' to generate
realizations of two processes {X.} and {¥,} whose conditional distributions given X2~! (or
equivalently £,) are N(0, f) and N(0, fa). These processes in turn induce random variables {7,
and V,, with the property that £(Un|X3™?) = £(U,) = £L(U,) and C(Va|X27Y) = L(ValX27H).
We will show that under regularity conditions on f, these two distributions are close with high
probability.

Theorem 3.4 Let f, be a spectral estimate which depends on X3! and satisfies the following
properties:

L If ~ falla = 0p(1)
2. P(inf, fa(w) > 0) — 1.
3. sup, fa(w) = Op(1)
{. sup, fn—l(‘*') = 0p(1)
5. sup, fo(w)? = op(n/log? n).
If 8 € Lip(1) ss even and periodic, then
U ~ Vi = 0,(1).
Corollary 8.5 LetU ~ N(0,2 [ 6(w)?f(w)?dw). If the conditions of Theorem 3.4 hold, then
1. dp (L(U), L(Ta1X3™Y)) = p(1) and
2. dp (c(U),c(V,|x3-‘)) = op(1).

Remark: Item (1) above shows that the sampling distribution of U, is consistently estimated
by the “bootstrap” distribution.

3.4 Functions of linear functionals

In this section we extend the results of the previous section to well-behaved functions of linear
functionals of the spectrum, i.e., the case where

h(é,\. e .é:p) = h(é,)

is used to estimate
h(e,,,...,e,,) = h(O,)

for some function A which is well-behaved.

3.4.1 Limiting distribution

In this section we establish that the limiting distribution of well-behaved functions of linear
functionals is multivariate Gaussian. First, we show that the limiting distribution of vectors of
linear functionals is multivariate Gaussian.
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Lemma 3.8 Let f, 8 € Lip(1), j=1,...,p, and let

élz = (b1, .. -yozp)l

be a vector of estimates of
8% = (0f1,...,04p)
where
by = [ 6,150
and

0= [ B fw)de)

for 7 =1,...,p. Then, the limiting distribution of /n(8; —6;) is N(0,T) where

T=2 ”/9,(‘.;)9.(“,”(“)@“ .
The following theorem can then be used to establish asymptotic normality of estimators

well-behaved functions of linear functionals.

Theorem 3.7 (Rao, 1972) If T = (Tin,-. -, Thn) is o k-dimensional random variable such that
the asymptotic dis.ribution of
V(Tia - 61)

VA(Tin - 64)

13 k-variate normal with mean zero and covariance matriz T = (0,,) and h is a function of k
variables which is totally differentiable, then the asymptotic distribution of

Va(A(Tin, -, Thn) — h(61 .. .6x))

1s normal with mean zero and variance
8h Oh
v(8) = Oy = —
Z ; 7 88, a8,
provided v(6) > 0, 8 = (6,,...,6x)".

3.4.2 Results

In this section we extend the result of Theorem 3.4 to well-behaved functions of linear functiouals
of the spectrum.

Theorem 3.8 Let f, be an estimate of the spectrum f which depends on X3! and satisfies
the assumptions of Theorem 3.4. Let X3~! and 7' ™' be realizations of two processes given by
the MC with transfer functions F = (f)V/? and G = (f,.)‘/’, and let §; € Lip(1), j =1,...,p
be even and periodic. If

Uz = Va(h(8s) - h(8y)), Vs = V/n(h(8g) - h(8;.)),
and h has continous derivatives in some neighborhood Ny, of 8, then

Uz - Vr = op(1).
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[2%]
[ 3]

Corollary 8.9 Assume the conditions of Theorem 3.8 hold, end let U* be a random variable
whose distribution is the same as the imiting distribution of U;. Then

1. dp (c(U;),cWﬁxg*)) = 0,(1) and

2. dp (c(U-), z:(ff,;lxg-‘)) = o0p(1).

3.4.3 Application: normalized functionals

We illustrate the results of the previous section with an example which we use later on in our
simulations.

Theorem 3.7 can be used to establish asymptotic normality of estimates of normalized linear
functionals, i.e., estimates

s JO@IE@)s _ 6,

= = . 3.7
== TThwde &R (3.7)
of functionals fG( ) f () o
. « nd !
85 = = , 3.8
1= T e T (3.8)
The class of normalized functionals includes the correlations
_ [cos(2rw) f(w)dw
o T T flw)dw

and the normalized spectral moments.

A corollary to Theorem 3.7 gives the form of the limiting distribution of normalized linear
functionals.

Corollary 8.10 If Un = \/n(8; — ;). then its limiting distribution is
N (0,2(9;)’ /(9(w)/0; - 1)’}‘(«;)’@) :
where f* = f/lif|lx.

Corollary 3.9 implies that the sampling distribution of U, can be consistently estimated
by our resampling methodology. In Chapter 6 we give the results from simulations where the
parameter of interest is a normalised functional, the first correlation.




i,

Chapter 4

Estimating the spectral density

4.1 Wahba’s estimate

In this chapter we introduce Wahba’s (1980) estimate and establish that it has the properties
which will allow us to apply the results of Chapter 3 when it is used as the spectral density to
generate the bootstrap samples.

The procedure estimates the log-spectrum of a stationary process with positive and differ-
entiable spectrum f € Lip(1). In this case the log-spectrum h € Lip(1) and has a Fourier series
expansion, i.e.,

hiw) =log f(w) = z by exp(i2xwk).
h=-oo

We will assume, in addition, that 332 |bs| < co.
Now, suppose we observe a realisation of length 2n from a Gaussian stationary process with
spectrum f, i.e., we observe X3"~! ~ N(0, f). The proposed estimate of h(w) is

n a

T bvﬂ .
ho(w) = Z ]—wexp(ﬂww), (4.1)
v=-n
where
. 1 ¢ .
by = W ,,.___Zn“ Yia exp(—i27vk/2n), (4.2)

Yin =log I3, (k/2n) + v, and ¥ = .57721... is Euler’s constant.
From (4.1) and (4.2) it is easy to show that R, is a smoothed version of the log-periodogram
since it can be rewritten as

ha@)= 3 YaaWamalw - k/2n) (4.3)
h=-n4l
where n ( )
1 exp(i2rw
W;,ml,‘(w) = 2—n —z m-(z—t;)Tn- (44)

is real, periodic, not necessarily positive, and such that

/1 Wi mn(w)dw = i Wi mn(w—k/2n) = 1.
0

hk=-n+l

23
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4.2 Properties of the log-periodogram

In order to study the properties of (4.3) it is convenient to first assess the properties of the
triangular array Yin, k = —n+ 1,...,n. We can write

Yin = log(K;,. . f(k/2n)Vgn) + ¥
= log(Kin tf(k/?n)) + €kn
where €, = log V4, + v, and establish the following

Lemma 4.1 If f € Lip(1) and I, is the periodogram from a realization of size 2n from N (O, f),
then

L. EYan = log(Ksn + f(k/21)) + M}O(log n/n)?
2 Eexn = M}O(log n/n)?
3. VarYy, = Var(ep,) = /6 + M,’O(log n/n)?
4. cov(Yan, V;n) = cov(€an, €;n) = M7 O(log n/n)?
uniformly in f for 1<k <j<n-1.

4.3 Properties of Wahba’s estimate

In this section we derive properties of Wahba’s estimate which allow us to apply the results of
Chapter 3 when we use this estimate of the spectrum, in other words, we show that Wahba's

estimate has the regularity properties which Theorem 3.4 requires. We introduce notation and
auxiliary results first.

The following lemma derives properties of the window W) ., , and its derivatives.

Lemma 4.2 If W) ; o(w) is given by (4.4), 0 < k < 2m, and

x d*
W§,,3.,..(W) = ZiWama(@),
then

A,mmn

sup [Wi) ()] = (A= 4 A=/ o(n
uniformly in A > 0.

Remark: There are two terms involving powers of A in the expression above to cover A — 0 and
A — o0o. In this paper we will usually need to use this result when A — 0 in which case Lemma
4.2 implies

w® (w)' - ,\‘(”")/""O(n“).

sup A,mn
"4

Now, notice that, for n large, the estimate (4.3) of h = log f can be rewritten as

ha(w)

3" (1og(Kan * f(k/27) + €4n) Wa,mn(w — k/2n)

k=-n4l

= Y Wamalw - k/2n)log(Kan + £(k/2))

h=-n+41

n
+ Y Wima(w - k/2n)ern
k=-n4l

= Faw) + ki) (4.5)

so that it consists of a deterministic term and a random term.
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4.3.1 Properties of the deterministic term

In this section we find bounds for the deterministic term and its first derivative. In addition,
we show that it converges in L3 norm to the true log-spectrum.

Lemma 4.3 sup, |ha(w)| < 00 _ 6] + (1 + A~Y3™)O(log n/n) uniformly in A.
Lemma 4.4 If f € Lip(1) is differentiable, then

sup (AL (w)] = (1 + A~Y3™)0(1)
uniformly in A.

The following lemma establishes convergence to b in L;.

Lemma 4.5 If f € Lip(1) and h, is given as in (4.5), then

1A = iinita < A(A) + (1 + A~/2™) O(log n/n) (4.6)
uniformly in A, whore \
1L o~ [ b A2y
#0= 3 (T i) wn)

»=-00

so that A(X) is bounded, continuous, and A(0) = 0.

4.3.2 Properties of the random term

In this section we establish bounds for the random term and its first derivative, and its integrated
mean squaze. First, the result for the integrated mean square.

Lemma 4.6 If f € Lip(1) and h}, is given as ({.5), then
E/h;,(w)’dw = O(n~Y)(1 + A1),

uniformly in M.
The following result establishes the regularity properties for the random term.
Lemma 4.7 Let hj(w) = Y1 _. .1 €anWa(w) and let the following conditions hold:

Eexn = O(log? n/n?)

sup, Elaaal? = O(1)

sup, ; Eeanejn = O(log? n/n?)

YaWal(w-k/2n) =1

sup, [Wa(w)| = O(n"™"?)

sup,, [Wa(w)| = O(n" ")

sup,, [Wa'(w)l = O(n"271),

where 0 < r; < 1,i1=10,1,2. Then, for any 0 < §,s < 1, we Aave that

NS B e =

sup [h; (@)] < Oy (13444770 4 p?4711) (4.8)

and

sup ;i“h.‘.(w)' < Op(n}/3+smimt ypranamty, (4.9)
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This result requires interpretation: Assume that W, = W .« Where the smoothing sequence
A, satisfies A\, =n~". Thea ro = #/2m, r, = r/m, and r;3 = 37/2m. Now let

1 r r
ar=max | - +6+——38,84+— -1
2 2m m

and
i

2

Then, if we take s = %+ % — & and 0 < r < m/3, we have that ay = 1/4 + 3r/4m +6/2 < 6/2
and ag = —1/4+57/4m+6/2 < §/2+1/6 so that, for § sufficiently small, it follows that a; < 0,
a3 < 1/6, and hence, sup |h;,| = Op(1), and sup |h}'| = Oy(n'/®).

( r 3r )
a3 = max +64+—~-s,84+—~1]).
m 2m

4.3.3 General properties

We can now establish a result for the integrated mean square error of h,.
Lemma 4.8 If f € Lip(1) and h, is given by (4.5), then
Edy(h,ha) = A(A) + (1 + A"Y™) O(log n/n) + O(n=1/3)(1 + A~V 4™, (4.10)
uniformly in A.
If fo = exp(ft,.) is used to estimate the spectrum f, we have
Lemma 4.9 Let f € Lip(1) and Ay = Kn™" for 0 < r < m/3. Then

ds(fa. £) = 0p(1) (O(logn/m'~" /™) + A(Kn~") + O(n~/2)(1 + A="/4™)) .

uniformly in A.

4.4 Summary

We have established that, if f € Lip(1) is differentiable, Y |b,| < oo, and A, = O{n~"),
0 < r < m/3, the estimate of the spectral density given by f, = exp(h,) has the following
properties:

1. sup,, |ha(w)| = Op(1) (Lemmas 4.3 and 4.7) which implies

(a) there exists € > 0 such that P(inf, fu(w) > ¢) — 1 and

(b) sup, fa(w) = Op(1)
2. sup, |h'(w)| = Op(n'/®) (Lemmas 4.4 and 4.7) which implies sup,, |f'(w)| = Op(n'/®)
3. ||fa — fll2 = o(1) (Lemma 4.9).

These are sufficient for the conditions of Theorem 3.4 to obtain.




Chapter 5

Simulation algorithms

5.1 Introduction

Recall the motivating problem stated in the introduction: a realisation X3! ~ N(0,f), f
unknown, is observed, procedure 4, is used to estimate a functional 8; of f, and it is of interest
to estimate the sampling distribution of 4,.

In chapter 3 we proposed the following approach to this problem: use some procedure f,
to estimate f and, by simulating many realisations from a process {Y;} whose conditional
distribution given f, is N(0, f,), determine the (conditional) sampling distribution of éy and
use it to estimate that of 4,.

From a practical point of view the problem is two-fold: (i) finding an estimate f, of f, and
(ii) calculating the sampling distribution of 6,, ¥ ~ N(0, f,). The first problem was addressed
in the previous chapter where we introduced Wahba’s (1980) estimator of the log-spectrum and
discussed its properties. As far as the second problem is concerned, our approach will be to
use Monte-Catlo to approximate the distribution of é, by the empirizal cdf of é,, for many
realisations Y3 ~' ~ N(0, f).

The Monte-Carlo approach to estimating distributions makes generating simulations quickly
very desirable. For this reason, one of the emphases of this research was to implement fast
algorithms to simulate realisations Y3 ' ~ N(0,g) for a given g.

5.2 Simulating Gaussian stationary processes

There are several ways to simulate realisations from N(0,g). For example, if we let ¢p,...,cn_
denote the first n terms in the Fourier series expansion of g, then (Lemma 2.1) £, = T(co,...,¢n_1)
is positive-definite whenever g > 0. It is thus simple, at least in principle, to obtain a realization
from N(0,.): let ¥~ = £3/222 where 227! is a vector of iid N (0, 1) variates.

The problem with this approach lies in calculating Ty, Obtaining the square root of an
arbitrary positive definite (p.d.) matrix requires O(n?) operations. Depending on the amount
of structure in the matrix this calculation can be speeded up. For example, by exploiting
the Toeplits nature of L,,, Carlin et al. (1983) describe an algorithm (essentially the Levinson
recursion) to obtain a Cholesky factorisation of T, in O(n?) operations.

The question is whether we can devise an algorithm which requires less than O(n?) operaiions
to generate realisations from N(0, g) by operating in the frequency domain and taking advantage
of the FFT’s speed. It 30 happens that there is an algorithm which only requires O(nlogn)
operations. The constant in O will depend on the smoothness of g.

27
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5.2.1 Simulation of circular processes

In order to explain our approach it is easier to start with the simplest case. It turns out that
this is the case where the covariance matrix is a circulant T, i.e, {Y;} is a circular process with
period n. We saw in §2.4 that It is a circulant if, and only if, TS = F,ALF,, where F, is the
Fourier transform matrix and A{ is a diagonal matrix whose entries are the DFT of the first
row of LY. In other words, the singular value decomposition of 8 circulant can be implemented
in O(nlogn} time by taking the FFT of its first row.

If A is p.d. (i.e. IS is p.d.) we can obtain a realisation Yo~ ! from N(0,Z%) by letting
YP' = Fa /RG22 for 22371 ~ N<(0,1), Zo, 2,3 iid N(0,1) independently of the other
2’s, and Za_x = Zx, Where for convenience we assume n is even. Recall that Z{'/’_l ~ N¢(0,1)
means that the real and imaginary parts of the vector Z'l‘/ -1 areiid N(0,1/2).

This algorithm can be implemented in O(nlogn) operations: (i) O(nlogn) operations to
obtain the FFT of the first row of T, (ii) O(n) operations to calculate its square root and
multiply by Z3 ™!, and (iii), O(nlogn) operations tc obtain the inverse FFT.

In implementing this algorithm we assumed that IZ is a covariance matrix, i.e., that it is
not negative definite. This is equivalent to assuming that the DFT of the first row of I, is not
negative and thus each of its elements has a real square root.

5.2.2 Simulation of non-circular processes

The algorithm used in §5.2.1 to generate realizations from circular processes in O(log n/n)
operations can also be used to generate realisations from non-circular processes with covariance
matrix T,,.

The approach in this case is to generate realisations of size 2n from a circular process whose
covariance matrix is chosen so that any n-long segment of the 2n-long circular process has
covariance matrix L,. We will see below how this is done. This idea is essentially due to
Jonas (1984) except that in our implementation we introduce a correction for negative definite
matrices.

Counsider the 2n by 2n Toeplits circulant

;,,=T(co,...,c,,_l,O,c,._l,...,cl). (51)

and notice that it has the property that any n by n block originating on the main diagonal is
equal to T,.
Recall that since Lj, is a circulant it has the factorization

Tin = FinA3nFon (5.2)
In other words, if A, is p.d. any n-long segment of
Yir-! = Faadg, /223, (5.3)

is distributed as N(0,Z,), where Z{"‘1 ~ N°¢(0,1), Zo, Z, are iid N(0,1} and 2 = Z3n_a, for
1<k<n.

This idea will only work if L5, is indeed a covariance matrix, i.e., if it is not negative definite
which is equivalent to the entries of A§, being non-negative. In fact, whether Lf, is p.d. or not
is a function of the smoothness of g If g is not smooth enough it may happen that some the
entries in A§, may not be positive. The reason for this is easy to see: Example 2 in §2.4 showed
the entries A§ of A® to be the partial sums of the Fourier series of g at the Fourier frequencies
k/n,k=0,...,2n—1,i.e,, Ay = Daqy1#g(k/n). The Dirichlet kernel is not positive everywhere
and so peaks in the spectrum may be weighted negatively and leak into regions of low spectrum
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making some A{’s negative. On the other hand, if g € Lip(1), Lemma 2.20 ensures that there
exists some N such that for every m > N, Damy1 + g(2) > 0 for all A.

In our applications ¢ = f, = exp(h,) > 0 where h,, is Wahba's estimate of the log spectrum.
Thus, given g > 0, we can find 5, p.d. by determining the smallest m > n such that the
eigenvalues Dy ¢ g(k/m) > 0 fork =0,...,m.

In practice we only encountered negative-definite L3, when simulating zhort realizations of
proceses with highly peaked spectra, e.g., autoregressions with roots near the unit circle. In
order to avoid too many increments of size 1 in searching for p.d. TS, we adopted the strategy
of doubling m until the problem disappeared. In other words, initially we simulated series of
length m = 2* where the actual sample sise of interest is n < 2%, i.e., we constructed L3,,, for
m a power of 2. We then calculate the DFT of the first row of L,,, i.e., we calculated the
eigenvalues of £5,,. If some turned out negative, we would take m = 2**!, and so on, until all
eigenvalues were positive.

5.2.3 The algorithm

Recall that for a given g we wish to assess the sampling distribution of an estimator é, of 6, by
Monte Carlo. We detail the steps of the algorithm below.

Notice that since we are given a spectrum g and not covariances, step 4 estimates the
covariances by approximating the integral in equation (2.2) by a sum.

Specifically, the algorithm consists of the following steps:

1. Get g.
2. Setd—1and m =2 > n,

3. Set d — 2d.

L

- Apply the DFT to g(k/dm),k = 0,...,dm — 1 and obtain co, ..., c4m/2-1-

"

. Calculate the eigenvalues A{, k =0, ...,dm — 1 of £5,, via an application of the DFT to

(cos€1y 1 Cdm/2-1,0, Cdm/a-1, .1 C1.)
If any of the A{’s are not positive go back to step 2.

6. Simulate a realisation Z = 2, ..., Zgm -1 from N°(0,AS,,) via an application of the FFT to
(»\i)‘“U., k=0,..,dm — 1. The U, are iid N°(0,1), k= 1,...,dm/2 - 1, U} = 74,,./,_,,,
=1+dm/2,...dm — 1, and Uy, Uym 3 are simply iid N (0, 1).

7. Apply the FFT to 2o, ..., Zgm_1 and call the result Yy, ..., Yin_{. Because U, = ﬁd,,./,_,,,
the Y's are real and clearly have distribution N(0,Z3.,).

8. Pick s such that 0 < s < dm ~ n, and thus Y*™' = Y,,..., Yo_14, is & reslisation from
N(0,Z,) = N(0,9).

9. Calculate ,.
10. Go back to step 6.

After repeating steps (6)-(10) a large number of times (100-1000) we usually have a reasonable
estimate of the sampling distribution of 8, under g.
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Chapter 6

Applications

In this chapter we discuss an application to estimating the sampling distribution of the MLE
(assuming only stationarity) of the first correlation coefficient. Specifically, we use the resampling
algorithm described in chapter § to estimate the bias and variance of this estimator. We then
compare the estimates obtained by resampling with Monte-Carlo approximations of the true
finite-sample bias and variance, and with asymptotic theory approximations.

It is important to note that the asymptotic approximations require knowledge of the model
and for this reason: (i) will not be very useful in practice and (ii) are prone to be more accurate
than estimates which could be actually used in practice; they are presented for comparison
purposes. On the other hand, the estimates obtained by resampling do not require specific
mode] assumptions beyond stationarity, Gaussianity, and spectral density in Lip(1).

We present results from simulations under two different models, the AR(1) and MA(1) for
several parameter values and sample siges.

6.1 Estimating correlation in the AR(1) and MA(1) mod-
els

Suppose that we observe a realisation X5 ' ~ N(0,f) and we wish to assess the sampling
distribution of the estimator

a fexp(i2m)l:(w)dw _ Y XeXe s
- fI:(“’)d“’ - PN X}

(6.1)

f
? _ Jexp(i2aw) f(w)dw fcos(w)f(w)du.

B [ fw)dw - JHw)dw
under two different models: AR(1) and MA(1).

8.1.1 AR(1) Model

The AR(1) model is
X+ 6Xi_, =€

where {¢.} are iid N(0,o?) variates. For this model p = ¢ and (cf. e.g., Kendall and Stuart,
1976) the variance of the limiting distribution of \/n(5 — p) is

V=(1-5%

30
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while the bias of  is given by
1+3

n-1"

6.1.2 MA(1) Model

The MA(1) model is
Xi= e +ve

where, again, {¢,} are iid N (0, o?) variates. For this model p = ¢/(1+ ¥?) and (cf. e.g., Kendall
and Stuart, 1976) the variance of the limiting distribution of /n(p — p) is

V =(1-3p%+4p%)
while the bias of 5 is given by

1
B~ ———(1+p)(4p* -20-1).
n-1

6.2 Results from simulations

Below we present results from simulations. The object is to estimate bias and variance for the
estimator of the first correlation given by (6.1). We compare three quantities:

1. asymptotic theory approximations
2. Monte-Carlo approximations
3. bootstrap estimates

We simulated 6 different processes: four AR(1) processes with parameters .9, -.9, .5, -.5, and
two MA(1) processes with parameter -1 and 1. For each of these models we considered three
sample sises: 32, 128, and 512.

6.2.1 Asymptotic approximations

The asymptotic approximations were calculated using the formulee in the previous section. We
report these under the heading co.

6.2.2 Monte-Carlo approximations

Monte-Carlo approximations of bias and variability were obtained for each model and each
sample sise by simulating N, = 10,000 realisations of the process and reporting the average
bias and average square deviation from the mean as the Monte-Carlo estimates of bias acd
variability. In other words, if 5; denotes the estimate of the value of the first correlation p based
on the i** sample, we estimate bias by

Ny
. 1 N =
buc(P)=F;Em—p=p—p.

=1

Similarly, to estimate variance we used

Ny
s 1 s T
Varnc(p) = A PR
=1

We report these estimates with estimates of their standard errors in parentheses under the
heading MC.
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6.2.3 Resampling estimates

Resampling estimates were obtained in the following manner: N; = 200 realization of the
original process were simulated and for each an estimate of the spectrum was obtained using
Wahba'’s estimate. In addition, for each of these estimates of the spectrum the associated first
correlation was calculated, i.e.. if f,“ is the estimate of the spectrum for the i** realisation, then

. fcos(Zer)f,",(w)dw
‘ J fa(w)dw

is the correlation associated with f.-. R R
Then, for each realization (i.e., for each f3), N3 = 200 realizations from N (0, fn) were
simulated and we estimated bias for each by

buc(4) = 5- DLEREREL
and variance by
Vatuo () = 3= X -7
where 5, is the estimate of correlation from the j** bootstrap sample of the i* realisation.

Under the heading BS we report the averages of these quantities over the 200 realizations
with estimates of their standard errors in parentheses.

6.2.4 Tables

In the following tables we use the notation 1.234_; to mean 1.234 x 1072,
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n = 32 BIAS VAR

[+'S} 1.613_, 2.344_,

MC | 4.443_; + (0.152_;) | 2.316_; + (0.042_,)

BS 3.392_; + (0.162_,) | 2.612_3 + (0.069_3)
n=128

0 0.394_: 0.586_2

MC | 1.212_; 4 (0.076_,) | 0.584_; + (0.010_,)

BS 1.070_; + (0.048_5) | 0.658_; + (0.015_;)
n =512

) 0.098_; 0.146_,

MC | 0.302_; + (0.038_,) | 0.142_; + (0.0025_,)

BS 0.307_, + (0.021_3) | 0.156_, + (0.0024_;)

Table 6.1: X, + 05X, =€ =>p; = —-.5

3
i
©
©Q

BIAS VAR
1.613_2 1.563_4
3.054_; + (0.124_;) 1.525_5 + {0.027_,)
3.291_, + (0.116_)) 1.763_, + (0.048-3)

3
[ 4
oo

0.394_, 0.391_,
0.778_3 + (0.062_5) | 0.385_; ~ (0.007_j)
0.816_5 + (0.039_;) | 0.432_; + (0.009 _,)

a
—
™~

FEHMEERREEE

0.098_, 0.098_,
0.178_5 + (0.031_,) | 0.094_, + (.0017_,)
0.213_; + (0.017_3) | 0.109_; + (.0016_;)

Table 6.2: X¢ = ¢ — 1.0¢¢, = py = —.

n = 32 BIAS VAR
) —8.065_, 2344,
MC | —-4.201_; 4 (0.152_3) | 2.319_; + (0.043_,)
BS | -3.520_5 + (0.157_3) | 2.552_3 4 (0.072_,)
n = 128
] —1.969_3 0.586_)
MC | —1.077_3 + (0.077_,) | 0.591_; + (0.010_,)
BS | -1.211_; + (0.053_,) | 0.661_5 + (0.016_,)
n =512
o0 —0.489_3 0146-:
MC | -0.236_; + (0.039_;) | 0.149_; 4 (.0026_3)
BS | -0.267_; + (0.021_;) | 0.157_5 + (.0023_3;)

Table 6.3: X. - .5X¢_1 €6 = p;m =0.5

R ] T T —
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n = 32 BIAS VAR

o —4.839_, 1.563_;

MC | -2.960_; + (0.123_;) | 1.520_5 + (0.027_,)

BS ~3.435_; + (0.112_3) | 1.701_; + (0.046_,)
n =128

> ~1.181_, 0.391_,

MC | —0.734_; + (0.063_5) | 0.396_; + (0.007_;)

BS -0.892_; + (0.041_,) | 0.461_; + (0.011_,)
n =512

0 ~0.294_, 0.098_,

MC | -0.148_; + (0.032_3) | 0.101_; + (.0017_3)

BS —~0.190_; + (0.018_3) | 0.211_; + (.0016_,)

Table 6.4: Xy = ¢, + 1.0¢;,, = py = C.5

n = 32 BIAS VAR

> 5.484_, 0.594_,

MC | 7.720_; + (0.102_3) | 1.039_; + (0.025_;

BS 6.261_5 + (0.123_,) | 1.432_; + (0.063_,)
n=128

e o} 1.339_3 0.148_:

MC | 2.130_; + (0.043_;) | 0.187_; ~ (0.004_,)

BS 1.932_; + (0.040_,) | 0.243_; — (0.009 _,)
n =512

) 0.333_, 0.037_,;

MC | 0.523_; + (0.020_;) | 0.039_, + (.0007_,)

BS | 0.517_; + (0.014_5) | 0.046_; + (.0011_,)

Table 6.5: X, + 09X, 1 = =>py = -9

n =32 BIAS VAR

o0 ~ll.94_3 0.594_3

MC | ~7.638_; + (0.101_5) | 1.018_; + (0.025_3)

BS | -6.302_, + (0.137_;) | 1.427_; + (0.060_,
n =128

o0 —-2.913-3 0.148_1

MC | —2.041_; + (0.043_;) | 0.187_; + (0.004_;)

BS | -1.915_; + (0.040_5) | 0.222_, + (0.007_3)
n =512

) -0.724_, 0.037_,

MC | ~0.504_3 + (0.020_;) | 0.040_; + (.0008_3)

BS | —0.504_; 4 (0.012_,) | 0.043_; + (.0010_,

Table 6.6: X' - .9X(-1 € > /= 0.9




Chapter 7

Improving estimators by
resampling

7.1 Sufficiency and improved estimators

Suppose that we observe X{,"l with distribution Pg and suppose there exists a sufficient statistic
Sa = S(X2~') for ©. In this case, whenever § is used to estimate 6, 6* = Ee(6|S,) may also
be used to estimate 6. Notice that sufficiency is only tequired to insure that §° does not depend
on O and is hence an estimator.
Now, the Rao-Blackwell theorem states that if the loss function L(6,6) = d(8 — 6) is convex,
then the risk function
R(6°,0©) = EoL(6",0) < R(4,©)

for all ©. In other words, if there exists a sufficient statistic S,, ¢* is at least as good an
estimator as 6 and possibly better. X

For example, if the loss is quadratic, i.e., L(8 — 8) = (6 — 8)? the risk is the mean square
error:

Eo(6 — 8)® = Var(f) + b(6)?

and hence

R(6",0) = Ee(Ee(8Sa) - 6)" = R(6,0) - Eo(Var(6]S,)).
so that the reduction in risk achieved by using 8" instead of 4 is
Eo(Var(§|S,)) > 0. (7.1)

A simple argument (cf. e.g. Lehmann, 1983) shows that for any estimator 6(X2~!) there
exists a (possible randomised) estimator §” based on S, with the same risk function. Indeed,
if S, is sufficient, the conditional distribution of X7~ ! given Sa does not depend on ©. This
implies that if Yo""l is drawn from the conditional distribution of XJ~! giver S,, the risk
function of 6 = §(Yg~!) is the same as that of §(X3").

The estimator 6" described above will be a randomised estimator unless it is equal to # with
probability 1. In this case, a corollary to the Rao-Blackwell Theorem asserts that 6* is uniformly
better than 67 (and hence than §).

The last paragraph motivates the approach we will follow. The h-~uristic idea is to find a
sufficient statistic S, of lower dimension than the data with the hope that 8" (and hence )
has & non-degenerate distribution given S, (and hence a variance) so that 6" is indeed a better
estimator than § (compare (7.1)).
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7.2 Sufficiency in time series: the circular case

If the data are a realization from a stationary Gaussian process, i.e, X7~ ' ~ N(0,L,) for
Toeplitz Z,, there is, in general, no sufficient statistic of dimension lower than n unless we
assume the data are generated by a specific model with a reduced number of parameters.

The types of models commonly used for time series data assume parametric representations
for either, (i) the mechanism generating the data, e.g., ARMA(p,q), or (ii), for the spectrum. The
spectrum in general does not determine the model, but it does under the additional assumptions
of Gaussianity and stationarity.

Our strategy for finding an improved estimator 6 on the basis of 4 is, in principle, very
simple: apply the Rao-Blackwell Theorem, i.e., find a sufficient statistic S, under the assumed
model for the data and calculate the expectation of  conditional on S,,. The problem is that
under most of these models, even in the Gaussian case, it is not easy to determine a reasonable
sufficient statistic, let alone to find the conditional distribution of the data given the sufficient
statistic.

Because of the difficulties just mentioned we will take a different approach: we will exploit the
fact that the problem simplifies enormously under the assumption that the process is circular.
Under this assumption: (i) the periodogram is a sufficient statistic and (ii), the distribution of
the data conditional on the periodogiram is easy to obtain.

7.2.1 Approximating estimators by Monte-Carlo

Assume we observe X3 ~'. The DFT of the datais J> = F, X}"' = ,l./zl‘s'l where A, is the
diagonal matrix of amplitudes of JZ and

exp(i27yo)
Fg—l = (7.2)
exp(i2xv,_1)

is the vector of phases. Since X7 ™! is real we have that Aj =A,_; and 45 = —7a_,.

Under the assumption of circularity, v; are iid U(0,1) for j = 1,...,n/2 — 1. This means
that, given the periodogram, the amplitude of the DFT is fixed and all we have to do to obtain
a sample Y;'~! with the same conditional (on the periodogram) distribution as the original
data Xg ! is to draw iid U(0, 1) phases Ag~', multiply each exp(i2x§;) by the corresponding
amplitude A;/’ (given by the square root of the periodogram), and finally take the inverse DFT.
Using this device, many new samples with the same conditional distribution as the original data
may be generated and, for each, the value of § can be calculated and averaged with the rest to
yield an arbitrarily precise approximation 6* to Ee(6]Sn).

The obvious question which arises is: why go to all this trouble? Why not simply start
off with an efficient estimator (e.g., the MLE) and avoid (usnally expensive) resampling? The
answer is that efficient estimators may not always be known, or may not have simple represen-
tations, but there may be other estimators, albeit inefficient, which are easy to calculate. This
point is illustrated with an example.

7.2.2 Example: crossing rates

Suppose we are interested in estimating the rate ¢, at which a process crosses a barrier at height
a, i.e., the rate at which the process = X, — a changes sign. In other words, if we define

_ 1 f Xy >a
Ze = { 0 otherwise, (7.3)




i,

CHAPTER 7. IMPROVING ESTIMATORS BY RESAMPLING 37

we wish to assess

n-2
- I _ 3
$a = lim — §(Z.+1 Z:)

Since (Zx41 — Zx)? = 1if, and only if, a crossing of a ocurrs at time k + 1, the problem reduces
to evaluating

b = E(Zus - Z4)?
= EZ}, +EZ}-2EZy1 2
= 2P(Xy 2a)-2P(Xyy12an X2 a)
= 2®(a/o,;) - 2P(Xiy1 2N Xy > a)

Even in the Gaussian case there is no simple closed form representation for ¢a. However, in
the special case when a = 0, we have that (cf. e.g. Johnson & Kotz, 1972)

2P(Xi41 20N Xy > 0) = .5 + x~ ! arcsin(p)
where p = EXoX,/EX], so that
¢$o = .5 — ! arcsin(p).

An efficient estimator of p is the MLE (under the Toeplits and the AR(1) models) 5 =
S XuXis1/ T X2 so that ép = .5 — x~ ' arcsin(p) is the MLE of do.
On the other hand, consider the naive estimator of ¢, given by

n-3
o 1
e DICIERENE

Notice that d;: can be calculated easily for all a but it is clearly inefficient since it uses only the
information in the sign of {X\ — a}.

As we mentioned above, under the assumption that our process is circular we can resample
the phases of the DFT of our original realisation to construct an arbitrarily close approximation
to a third estimator of ¢q,

$: = Ee (¢°13)
where IZ is the periodogram of the data X3! evaluated at the Fourier frequencies.

Two questions arise now: first, what are the relative efficiencies of these three estimators
and, second, in what situations, if any, can we improve our estimators by resampling if the
original process is not circular? We will defer addressing the first question until the simulations
and try to shed some light on the second one.

7.3 Improved estimators: non-circular case

Our approach is suggested by that of the circular case: calculute the periodogram of the original
data and estimate the random variable E(8]IZ) by 6* where 6 is obtained by resampling our
original data conditional on the petiodogram and pretending that the phases are iid U(0, 1) to
obtain new samples. For each new sample we then calculate the value of 6 and, finally, take the
mean of the values of § for each sample to be our approximation to 6.

Since in the non-circular case the phases are not really iid U(0, 1), but only approximately
so, we will have that §° # E{|IZ} in general (the r.h.s. may not even be a statistic since it
may depend on 8), but if the difference is not large we may still get an improvement over 6. For
example, if 6 is unbiased, then 6* will in general be biased but will have lower variance so that
in the end the MSE may be reduced by using 8°.
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7.3.1 Distribution of resampled data

In order to study more precisely what effect pretending the phases are iid U(0, 1) has on the
resampled data Y ~!, we determine the distribution of Yg'~.

Lemma 7.1 Let X2~' ~ N(0,Z,) , Tn = T(co,--.,Cart), and J2 = Fa X3! = AYT3!
where A, i3 the diagonal matriz of amplitudes IZ(k/2n), k=0,...,n - 1. If

exp(i2xdg)

AS'I = :
exp(i2x6,_1)

where the components of A'{“'l are 11d U(0,1), 6 = §op for 0 < k < n, and Yo ! =

FoAy/ 57, then .
LI = L(XHR = 1)

where X2-' ~ N(0,Z%), & = T(c§,..- ¢ y), and ¢ = (1 = lk|/n)ex + ({k|/n)ca_jx for
0<k<n-1.

Remark: Lemma 7.1 establishes that, for n large, the covariances c§ of the data resampled,
pretending the process to be circular, approximate those of the original data for & not too large.

7.3.2 Heuristics

We can now study what §° estimates in the non-circular case.

Assume that the parameter of interest is a function of the unkown covariance structure
(co,c1,-..) of the process, i.e., 8g_ = 6(f). The cortesponding parameter for the circular process
is 87, = 6(fa) where f, denotes the following “sum” of the first n Fourier coefficients of f, i.e.,

n-1

falw)= 3 (1 - kl/n)cn + (k| n)ca_x)) exp(i2mwk).

k=-n+l

Assume, for simplicity, that § is unbiased, i.c., E'(é) = 8y, so that its MSE is just its variance,
ie.,

E(6 - 6;)* = Vaz(6).

On the other hand the distribution of the resampled data is N(0, f,) and since § is unbiased
it follows that E(6*) = 6;_, and hence the MSE of 6* is

E{§ - 8;)* = Var(6") + (6, - 65)*.

It remains to assess b, = 8;_ —0;. Todo this it will be convenient to consider 4 as a function
of the Fourier coefficients of f, i.e.,

6(f) = 6(co,c1,...).
Similarly
6(fn) =0(co,(1 = 1/n)er + car/n,..., (1= 1/n)c1 + a1 /n,0,...),
so that, using a Taylor expansion, it is easy to see that

b,. = 9”‘ —0!

13 00 6
~ -;Zk(ck_cﬁ—k)‘a':— her
&=0 [k|>n
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The quantity b, measures the change that circularising by assuming iid random phases
induces in the parameter of interest. If |b,| is not too large and § is rather inefficient, we may
do substantially better by using §° rather than § even in the non-circular case.

In the example concerning the estimation of the crossing rate of 0, ¢o = .5 — -1 sin~1(p),
p = co/c1, and it is straightforward to verify that

P
bo~ ——E
B

and the results from our simulations indicate that there is considerable reduction of MSE. In
fact, it turns out that d;c', is almost as efficient as the MLE even in cases where the parameter
space is of much smaller dimension than the periodogram. The reason for this is that the bias
introduced by assuming circularity is of the same order of magnitude as the bias of the MLE
and thus contributes little to the MSE for n large.

7.4 Results from simulations

In this section we report results from the simulations. For each process we simulated N, = 1,000
realisations and estimated phio by ¢0, ¢o. and ¢°, reported under the headings naive, MLE, and
resampled, respectively. The resampled estimator, ¢°, was obtained by resampling the phases
of each realisations 100 times, i.e., it is the average of 100 ¢




CHAPTER 7. IMPROVING ESTIMATORS BY RESAMPLING

n =512

BIAS

MSE

Naive
MLE
Resampled
ba

-0

—0.360_; + (.048_,)
—0.184_, + (.047_3)
—0.128_,

0.520_3 + (-030_3)
0.225_5 + (.013_3)
0.225_3 + (.013_g)

n =128

Naive
MLE
Resampled
b,

-0
~1.141_3 + (.098_,)
—0.464_, + (.099_,)
—0.513_,

2.022_3 + (.114_3)
0.962_3 + (.063_3)
0.975_5 + (.061_5)

Table 7.1: Xg + .9X¢_1 = € = ¢0 = .8564

n=128

BIAS

MSE

Naive
MLE
Resampled
ba

0

1.066_, + (.095_3)
0.349_, + (.097_3)
0.513_,

2.093_5 + (.112_3)
0.893_3 + (.055_3)
0.945_ + (.056_3)

Table 7.2: X, — 9X,_| = ¢, = ¢o = .1436
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Appendix A

Auxiliary results and proofs

A.1 Chapter 2

Proof of Lemma 2.1: Fix n and let £, = T(co,...,¢n-1). For any vector (zo,-.., Zn_y) define
é=(A) = Z:‘z_; z, exp(—i2xs)). Then, since f > 0 and ¢ is continuous,

1 n-1
0< [0 fNdA = Ty ez = 'Bae
o 2,820
unless [¢,(A){=0 ¢ 2z, =0. [ |

Proof of lemma 2.2
|FM @)l =1 c(i2ms)* explizraw)| < (27)* T faf*fc, |

which proves the first implication of the first part of the lemma. As for the second implication,
it is easy to see that if a function f has a bounde! first derivative then M; = sup, |f'(z)| and
hence f € Lip(1).

To show f continuous: Let ¢ > 0. Since )_|c,| < oo there exists N = N(¢) such that
Tisn el < €/2, s0 that

E ¢, (1 — exp(i2xs6)) exp(i27sw)

(fw+8) - flw)]

< 2 Z le, sin{xs6)| + €
ls|<N
< 206 ) lellsl+ e
<N
but for fixed N, the first term above is continuous in § and goes to 0 as § — 0. [ ]

Proof of lemma 2.4: The first assertion follows immediately from the properties of Z(w). As
for the second, notice

|F - GI* = f +g - 2y/fgcos(8 ~ ¢)

where 6 and ¢ are the phases of F and G respectively. Clearly 8 = ¢ achieves the minimum. B
Proof of Lemma 2.5: Obvious. |
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Proof of Lemma 2.10: The first assertion is standard (cf. e.g. Hasminskii and Ibragimov,
1986). As for the second, let

An

[ 152) = 6Duz - 0Du(z - 0122

]/{f(z +1) — f(8)}Dn(z +t — 8)Dp(2z)dz

IA

/If(z+t)—f(a)IID-.(zH—s)IID,.(z)ldz

IA

My [ min(ls +1 - s}, 11 = 2 = t+ )| Da(z + ¢ = #)|Da(2)ld2
since f € Lip(1), periodic and symmetric, so that

An < M; sup Ian(z)I/iDﬂ(z)idz.

0<z<.5

Since [|Dn(z)/dz = O(logn) (c¢f. e.g., Butzer and Nessel, 1971), to establish the lemma it
suffices to show that there exists K such that supoc. < 5 [2Dn(2)| < K. Indeed,

sup |2D,(z)| = z_ﬁ_n.(_fﬁl <
0<z< 8 o<z<.5| sin(xz)
u z 3
- 05,2,; sin(xz)| ~ 5«
since (cf. Butser and Nessel, 1971),
sin(xz) S 1= z"
xz ~ 1+22
and the lemma follows immediately. [ |
Proof of lemma 2.11: The first assertion is obvious. The second is a standard result (cf. e.g.
Priestley, 1981) and is also a consequence of the proof of Lemma 2.12 which follows. |

Proof of lemma 2.12: Let A = I/n and 4 = m/n. Using the Cramer representation for X,
and the fact that 1770 exp(i2xAt) = exp{in(n — 1)A}Da(A) it is easy to see that

Jiw) = % / F(w)e'™ =00 D, (0 — p)dZ(w). (A.1)

Using the fact that F(w) = F(—w), the symmetry of D,, and straightforward manipulation, we
have that

RUIWY = U+ )
= 5oz [ Folexplinn - 1) - ) Dale - )
+exp(in(n - 1)(w + 4)) Da(w + w)]dZ()
and
SEW = 5003 - TG

= g7z [ F@lexptintn - 1w - w) Dl - )
—explix(n - 1w + ) Da(w + )42 ().
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Using (2.3) and the symmetry of f and D,, it is straightforward to see that
An = ER{Z(0)IR{IZ(2)}
l .
= G / f(w){CXP(lﬂ’(n - 1)(—[1 + A))D“(w - p)D“(w - A)

+exp(in(n = 1)(~4 — A)) Da(w - u) Da(w + )
+exp(ix(n — 1)(p + A)) Dn(w + ) Dp(w — A))
+ exp(in(n — 1)(4 — A)) Dy (w + ) Dy(w + A) }dw
= ol I [ f0)Da(o - Dl - N
+cos(1r(n - 1)(
2n

£+ ) /f(w)D,.(u + 1) Da(w — A)dw

_ 25(_"(2_:_-_"_)2/““)0,.(«: - 1) Da(w — A)dw

+c<>s(1r(2i;+ A) /f(w)D..(w + 1) Da(w — A)dw,

and the result follows from lemma 2.10.
Similarly,
B. = EST(WQUI()
= 15 [ f@)explin(n = 1)(=n + N)Dulw — 4)Dafw - 3
—exp(im(n — 1)(—p — A))Dp(w — 8)Da{w + A)
—exp(ix(n — 1)(s + A)) Dn(w + p)Da(w — A))
+exp(ix(n — 1)(u ~ A))Da(w + 4) Da(w + A) }dw
- cos(x(n "27“)(“ ). /f(w)D,.(w — 4)Da(w — \)dw
_cos(r(n ~1)(p+ )
2n

_ °_“(_"(2Ln:"_)) / f(w)Da(w ~ p)Da(w — A)dw

/ (@) Da(w + ) Da(w — A)duw

and
Ca = ERJ(u)IJ2(A)
= & [ £ explin(n — 1)(-u+ N)Dafo - WDale - )
—exp(ix(n — 1)(—p — A))Da(w — ) Da(w + A)
+exp(ix(n — 1)(p + A))Dp(w + ) Dy (w — A))
— exp(ix(n — 1)(s — A)) Da(w + #) Da(w + A)}dw

__sin(x(n -271‘)(:‘ —A) /;(W)D..(u ~ #)Da(w — A)dw
+sin(t(n —2l)(# +4))

/f(u)D..(w + p)Dp(w ~ A)dw




————
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_ sin(r(Z: - ) / f(@)Dna(w — p) Da(w — A)dw

_sitx(w(zt:l+ A) / f(@)Da(w + ) Dn(w — A)dw
M;O(log n/n).

Proof of lemma 2.13: To prove the first assertion, let

U = %{X\/l_ﬂ;+lf\/l—_p}
and
Uz = %{X\/ITP—Y\/I:'—P}

for X,Y iid N(0,1). It is easy to verify that Uy, U; are also iid N(0, 1),

X = %{Ux\/l_*‘_f’*P-Uz\/l_—_P}.
Y= %{Un/l_—_p—vﬂ/m},

and W = (14 p)U2 + (1 — p)U3. This proves the first assertion.

To prove the second assertion it suffices to show that the random variables Z; = U? + Ul
and Z; = (U2 — U3)/(U? + U3}) are independent.

Indeed, verify U3 = Z,(1 ~ Z;)/2, U} = Z,(1 + Z;)/2. Then, verify the Jacobian is Z;/2.
At last, verify the resulting joint density of Z; and Z; is given by

*~texp(—2/2)(1 - 23)~/?

and the result follows. [
Proof of lemma 2.14: Using the Cramer representation (2.3), it is straightforward to see that

W = [ [ [ [Pl Fec) G-ty

x D (wo — A) Da(wo — A) Da(w1 ~ ) Da(w; — 4)dZ(wo)dZ(wg)dZ(w1)dZ(w}).
Taking expectation yields contributions in three cases:
1. wo =w(', and w; =w;
2. wo=w; and wy =w:)
3. wo=~w; and wé, = —w;.

The contribution from (1) is

2 [ 1o D300 ~ Ndwo; [ ofwn) D2(un ~ wdon =

/ $(@)Kaw — N)dw / 9(w)Ka(w - Ndw = EIZ(3)ET(w).

The contribution from (2) is

% / F(wo)G(wo)e'*»~1(#=2) D (wg — A) Da(wo — p)dwo x
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x% / G(w1 ) Fwy)e (" ~u=2 D (0 — A)Dafwy — u)dwy =

3

/ F(0)G(@) Da(w — A) Do (w0 — p)dw

_ 1
==
Analogously, the contribution from (3) is

2

3 | [ FOIGEIDMw - NDaw + u)dwt .

n?

The result now follows trivially ]
Proof of lemma 2.16: Consider each of the terms in (2.9). By Lemma 2.10, the first term

/ f(2)Dn(z = A)Da(z - u)dz = F(u)Dalts ~ A)
" j {£(2) ~ £(8)} Da(z - \)Da(z — w)dz.

and a similar expression holds for the second term. If 4 # A are Fourier frequencies, 0 < u, A < .5,

A Dn(ps— A) = Dpy(ps+ A) = 0 and Lemma 2.10 gives the desired resulit. [ |
Before we can prove lemma 2.17 we need three auxiliary results. First a result bounding the
distribution of quadratic forms:
} Lemma A.1 If X ~ N(u,L),Z > 0, then there ezists a random variable W ~ x3(u'Z-'4)
such that
W< X'X<t'W
where t.,1° are the smallest and largest eigenvalues of T respectively.
Proof: Let L = JTJ' where T is the diagonal matrix whose entries are the eigenvalues of
L and J is the matrix of normalixed eigenvectors such that JJ' = J'J = I. Notice that
X =JTY3T-Y3J'u+Y) for some Y ~ N(0,I) so that
‘ XX =Y +uIT"YHYT(TV)'u4Y)=2'TZ
) for Z=T-"Y3J'u+Y ~ N(T-YV2'yu,I).
But Z2'TZ = ¥, Z? so that clearly
.52 <212 <) 2}
and the result follows from the fact that 5 Z2 ~ x2(E(Z)'E(Z)) and that E(ZYE(Z) =
WIT- p =y 'y [ |
Second, a lemma which bounds the expectation of the log of a non-central x3:
Lemma A.2 If W ~ x3(26%) is a random .ariable with ron-central x* distribution with 2
degrees of freedom and non-centrality parameter 26%, then
—7 < Elog(W/2) < 6(1 +7) - v
where ¥ = .57721... is Euler’s constant.
Proof: Bickel and Doksum (1977) show that a x3(26?) variate can be generated by first sampling
a Poisson (6?) variate R and then sampling a central x3,,, variate independently. Also, it is
well known that
Elog(x}./2) = =) = ¥(r)
40 ¢ - r(r) =
- o Migiton

T~~~ —————— -
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where v is the digamma function (cf. e.g. Abramowits and Stegun, 1954). In particular,
¥(1) = —7, so that

® e _Ah ek
Eogwyz) = Y ZREWéEL])
k=0 ’

haid 3%k
exp(-07)(w(1) + 3 202,
k=1

Since 0 < Y(k + 1) < k, for k > 1 (cf. Abramowitz and Stegun, 1954), all the terms in the
sum are positive so that the sum itself is positive which implies

exp(—6%)y(1) < Elog W/2.

Since ¥(1) = —v and 0 < exp(—82) < 1 the first inequality follows.
The second follows from the same property, 0 < ¢(k + 1) < k, k > 1, so that

Ok +1) = 3
g WS .4\::1 oy =9 exe(®):

Thus, we have that
ElogW/2< —yexp(-8?) +67 < —y(1-6")+ 8> = -y + 0*(1 ++) 0

Lemma A.8 /fU and V are two-dimensional vectors such that

(v)=2(( 7))

where 72 is the largest eigenvalue of > A' A and h(U) is a real-valued random variable with finite
second moment o3, then cov(h(U),log V'V) = ¢O(1?), uniformly in A and h.

Proof of Lemma A.3:
cov(h(U),log V'V) = cov(h(U),log V'V/2) =
E {(MU) - Eh(U))(log V'V/2 — Elog V'V/2)} =
E{(h(U) — ER(U))E(logV'V/2 — Elog V'V/2)|U}. (A.2)

First we evaluate the conditional expectation above. We know E(log V'V/2) = —+ and the
distribution of V given U is simply N(rA'U,I — 1A’ A). Write A'A = PAP', for orthogonal P
and diagonal A with entries 1, A3, where 0 < A; < 1.

First we bound V'V |U: apply lemma A.1 with & = I - 724’A = P(I — 7A)P' and s =
TA'U = TPAY3QU, where Q is orthogonal. If we let QU = R, it is easy to verify that the
non-centrality parameter is given by

292

PUQAVNI - PA)TIAYQU

3fpa_1 1M
T (R‘l—f’+Rzl—rzA;
73 73

— ' e —
g g

< RR

Since the eigenvalues of I — 3 A’A are given by 1 — 72 = . < t* =1 — 73], it follows that

Q1= YW < V'VIU < (1 - r2A)W, (A.3)
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for some W ~ x3(26%). Taking logs and expectation in A.3, an application of lemma A.2 yields

V'V [ 2
log(1~ )< E (log —2—-IU) + v <log(l - r?A3) + Uz_Ul—Iﬁ(l +7)

which implies

'

v'v 1 vr - v
IE(log 3 IU)+-ylSlog(]_rz)+—~§——1—_—r—3(1+7):(1+7)<——2—+1)O(,—3).

Lemma A.3 follows upon using this result and applying Schwarz’s inequality to evaluate (A .2)
together with the fact that E(U'U)? = Ex} = 8 and h(U) has standard deviation o. [ ]

We can now prove lemma 2.17: By lemma 2.13 the two periodogram ordinates can be written
as

W, = (UZ+UH+pmb)
= Wil +mb)

where py = M;0(logn/n), and

W, = (V+ Vz’)(l + p203)
= W;(1+ pib,).
Since [6;{ <1
log(W,) = log(Wy) +log(1+ p,8,)
= log(W;) + p,8; + O(p?).
so that,
cov(log(Wy),log(Ws)) = cov(log(Wy),log(W;)) + pacov(log Wy, 63)

+prcov(log Wy, 81) + Olp1| + lpal)?. (A4)

By lemma 2.12 the last term above is M} O(logn/n)?.
It remains to calculate each of the covariances in (A.4). Notice that U; and U, are in-
dependent and so are V; and V;, so that the covariance matrix of Uy, U;, Vi, and V; looks

like
I tA
L U § )
Lemma 2.12 tells us that 7, py, and p; are M,0O(logn/n) and an application of Lemma A.3

yields
cov(log(Wh), log(Ws3)) = O(r?) = M}O(logn/n)’ W

Proof of lemma 2.18: Clearly

n-1
— 1 .
F.XF, = (- 3" ou, exp(i2n(sl - Jk)/n)) , (A.5)
n k,2=0

Equation (2.13) follows easily using | = j in (A.5) and the fact that oa, = os_,|- Equation
(2.14) follows upon dividing (A.5) into two sums, 35" and E::H, changing the summation
index in the second to ¢’ = n + ¢, and using the fact that o = o_,. B

Proof of lemma 2.19: Immediate from the fact that LS is a circulant. [ ]
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Proof of lemma 2.20: By Lemma 2.2 f is continous and since it is positive f(w) > € for some
€ > 0. Now,

flw) = Z cy exp(i2xwk) + Z cx exp(i2xwk)

tki<n {k>n

an(w) + To(w)

Notice that a,(k/2n) = A is the k** eigenvalue of Z$a, and that a, and r, are real-valued
functions. On the other hand, since Y |ci| < oo there exists N = N(¢) such that r,(w) < /2
for n > N and thus

an(w) = f(w) —ralw) > e —€/2 = €/2.

which means that all the eigenvalues of T, are positive for n > N. n

A.2 Chapter 3

A.2.1 Auxiliary deflnitions and results

This section is devoted to establishing definitions and auxiliary lemmas which we use in deriving
the results in Chapter 3.

In what follows, let (2 be complete and separable. Let B be the Borel o-algebra and M the
space of probability measures on (1, B). Let d(z,y) = ||z — y|| denote the metric on €.

Definition A.1 (Huber, 1981) For any subset A C Q1 define the closed §-neighborhood of A a:
A% = {z € Q|infyead(z,y) < 6}

Definition A.2 (Huber, 1981) The Prohorov distance between two members F,G € M is
dp(F,G) = inf {€ > 0|F{A} < G{A*} + ¢ for all A € B}.

Theorem A.4 (Strassen) (Huber, 1981) Lete > 0 and F,G € M. The following two state-
ments are equivalent:

1. dp(F,G) <e

2. There ezist (dependent) random variables U and V with values in Q1 such that C(U) = F
and L(V) =G, and P{d(U,V) > ¢} <.

The following results are concerned with establishing properties of conditional probabilities
of sequences of random variables.

Lemma A.5 Let X, and Y, be sequences of random variables which, for each n, are defined
on the same probability space. Then Y, = 0,(1) implies P{[|Ya|| > ¢|Xn} = 0p(1).

Proof of Lemma A.5: Yo = op(1) implies that for all € > 0, there exists N = N(¢) such that
P{||Ya]| > €} < ¢? whenever n > N. By Markov's inequality, for n > N,

P {P{|[Yall > €|Xa} > €} <

EP{lYall > elXa} _ P{lall > ¢} _ €& _ o
€ € €

Lemma A.8 Let U,, V,, and W, be sequences of random variables which, for each n, are
defined on the same probability space. If, for each € > 0, P{||Un — V,|| > €|Wa} = 0p(1), then
dp(L(Un|Wa), L(Va|Wa)) = 0p(1) .

v e



APPENDIX A. AUXILIARY RESULTS AND PROOFS 49

Proof of lemma A.6: Let X, = P{||U, — V,|| > e|W,} and Yy, = dp(L(UnlW,), L(VaIWL)).
Strassen’s Theorem implies that Y, < ¢ whenever X, < e. It follows that P{X, > ¢} > P{Y, >
¢} but P{X, > €} < ¢ for n large enough and the lemma follows. 8

Lemma A.7 If D, is a positive random variable and E(Dn|Zn) = 0,p(ra), then Do = 0p(ra).

Proof of Lemma A.7: Let X, = E(D,|Z,). By definition X, = o,(ra) if, and only if, for all
8,€ > 0 there exists N = N(8,¢) such that for n > N, the set A, = { X > €ér,} has probability
P{A,} < 6. Forn > N, we have on AS

E{D.|Z,} < Sern

P{Dp > €rn|Za} < < =4
er, €Tn
Hence,
P{D, >er,} = /P{D.. > ¢rn|Z,}dP
< §+6=251

A.2.2 Proofs for Chapter 3
Proof of Lemma 3.1: By Lemma 2.11

E6, = /o(w)x,. ¢ flw)dw = /O(W)(f(.;) + M; O(log n/n)}dw
- /G(u)f(w)du + M, O(log n/n) B

Proof of Lemma 3.2: By Lemma 2.14
A, = cov(é,,éy)

[ [ 818t con(rz ). Pow e

= o [ [owee
sz [ [ors)

= Bn""cn

3
dwdw’

/ F(2)G(2) Da(z — ) Da(z ~ w')dz

|
dwdo’

/F(z)G_(z_)D,.(z —w)Dp(z +w')dz

Expanding the squared term in B, above
Br = 3 [ 80) [ [ FEIGECWF@DME ~)Puly )
« [ 8)Da(z - ') Daly - o' )i dedyde.
By Lemma 2.10 we have that, uniformly in ¢ and 4,
/¢(W’)Dn(= — ' )Da(y ~ w')dw' = ¢(2)Dn(z — y) + MeO\logn),
and analogously

/O(Q)D,‘(z —w)Dp(y~w)dw = 8(z)Dnlz — y) + MyO(logn).
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It then follows that, uniformly in F, G, 6, and ¢,
B, = L~ // )G F(3)G(y) (8(z) Dz — y) + MsO(log n)) x
x (¢(2)Dn(z — y) + MyO(log n)) dzdy
= —//F G(: y)G(y) (¢(z)8(z)nKa(z — y)
+ O(log n)(My8(z) + Ma(2)) Da(z — y) + MeM4O(log” n)) dydz
= - f F(2)G(2)8(2)@(z) f F{y)G(y) Kn(z - y)dydz
+0(logn/n?) / F(2)G(z) (M8(2) + Mog(2)) / F(y)G(y)Dn(z — y)dydz

3
+0(log® n/n* )My M, V F(2)G(z)dz

= /f(z z)8(z)é(z)dz + O(log n/n’) Moz sup | FGO¢|
+0(log? n/n?) sup |[FG|? (2 max{ M, sup ¢}, My sup 61} + Me M)

Since 8 and ¢ are in Lip(1) and are fixed functions, we shall, for notational convenience, drop
uniformity in ¢ and ¢ and so

B, = /f(z)g(z)@(x)da(z)dz + Mpzsup [FGO(log n/n?) + sup |f910(log? n/n?),

uniformly in F and G. The result now follows immediately upon noticing that the bound on
C, is the same. [ |
Proof of Theorem 3.3: By Lemma 3.1 we have that

E}Un“'vn}: = nE(él—gf—(éy_og))2

N N R 2
aVar(f, —6,) +n {E(o, - 8;)+ E(f, - eg)}

n (Vu(é,) + Var(dy) ~ 2cov(6;,6,))
+(M,y + M;)?O(log? n/n)

so that the theorem follows readily from Lemma 3.2. |

Proof of Theorem 3.4: The regularity conditions on f, and Theorem 3.3 imply E{jU, -
V.2 Xe Y = 0p(1) which, by Lemma A.7, in turn implies {Tn — V,| = op(1) .

Proof of Corollary 3.5: (1) follows from the fact that , — ¥, = o »(1) implies (Lemma A 5)
P{|Un~Vi| > €lXg~ '} = 0p(1) which in turn implies (Lemma A.6) dp (C(U [X2™1), L(ValX2™Y)) =
op(1) but L(U.|X3™") = £( U ). (2) follows from the triangle inequality and the fact that
L(Ua) = L(U). a

Proof of Lemma 3.6: Hasminskii’s and Ibragimov's (1986) tesult (3.3), can be used to estab-
lish

L(a'v/n(8, — 6;) — N(0,a'Ta)
for any vector a so that the result follows by taking limits of characteristic functions. [ |
Proof of Theorem 3.8: Using a Taylor expansion we can see that

- dh(8y)
U, = J‘Z ’(9,,_9,,)+A..

= U,:‘ + Anq
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where

8h(6y) dh(83)

An < Valls ~ 8] | T2t - 28 = mls - 614,
and 83 is between 6, and ;.
Similarly,
. ’~ Oh(8y)
w = Vn 26, (8g; — 04 ;) + Ba + Ca
1=1
= ‘-/':. + B“ + Cn

where

oh(6;)  Bh(6;)

Bu < Vlly - 6y 1l | —52> - =35

= V/nlifg - 6;_liBx,

Cn < Vllfg - 85| = Vniléy - 8;_lICa,

6h(9y)  h(8y)
96 98

and 6y is between 64 ard b;.

Now, Uz* — V;2* = 0p(1) by Theotem 3.4 and by Theorem 3.7 \/n(fs — 6;) has a limiting
distribution and hence /n||/fs ~ 841] = Op(1). Theorem 3.4 implies that \/;(59 ~ 9/‘..) has the
same limiting distribution as /(6 — 8;) and so /7|y — 8; (| = O,(1).

It remains to show that A}, B;, and C,, are each o,(1). A!, = 0,(1) follows from ({¢3 — 6,/ <
18s ~84]| = Op(n=1/%) and the fact that h has continous derivatives in Ny,. On the other hand,
if d(f, fa) = 0p(1), then, for n large, 64, € No, with high probability, and since A has continous

derivatives in Ny, , this implies that B; = op(1) and C}, = 0,(1}. |}
Proof of Corollary 3.9: Theorem 3.8 establishes U: — V,; = Op(1). The rest of the proof is
identical to that of Corollary 3.5. ]

A.3 Chapter 4

A.3.1 Distances between spectra

Definition A.3 Let f and g be two complez-valued, measurable functions defined on [0,1].
Define the metric da(f,9)? = [, |f(w) - g(w)[?dw.

Lemma A.8 If f and g are complez-valued, measurable functions on {0, 1], then
da(f, g) < sup max(|f(w)|, [g(w)(}da(log f,log g).

The proof is a consequence of the following lemma:

Lemma A.9 |1 - e*| < |z| max(|e*|, 1) for complez z.

Proof: Let z = z + iy. Then

e — 12 = €** - 2% cos(y) + 1 (A.6)
= (e* = 1)7 +2e*(1 - cos(y)) (A7)
< (ef - 1)+ 7y (A.8)
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since 1 — cos(y) < y*/2. By Taylor’s theorem, there exists 0 < § < 1 such that (e* ~ 1)? =
z2e®®® < z? max(e?*, 1). Hence Je* - 1)? < (22 + y*) max(e?*,1). The result follows upon taking

square root and using the fact that |e*| = ¢*. |
We can now prove lemma A.8: Apply Lemma A.9 with z = logg — log f:

\f =9l =1fll1 - g/f1 < |log f - log g| max(|f],|g1). (A.9)

The result now follows upon integrating A.9. [ ]

A.3.2 Proofs for Chapter 4

Proof of lemma 4.1: Lemmas 2.11 and 2.13 show that
Vin = (1 + 260 (U], + UjL)/2

where U, are iid N(0,1) variates, 6, is a random variable such that |6;| < 1, and p; is the
correlation between the real and imaginary parts of the DFT. Thus we have that

€xn = log(Uk + U23)/2 +log(1 + pabi) + 7.

Lemma 2.12 establishes py = M;O(logn/n). Since (U3, + UZ,)/2 is an exponential random
variable, the expected value of its log is just —v so that

Eexn = puEOy — pl E61/2 + pLEB3 /3 + O(p}).

The first assertion then follows from the faci that £(8*) = 0 for m odd and the second follows
trivially.
Now, the variance of

€xn = log(1 + pubi) +log(U + U3 )/2 +

is equal to the sum of the variances of the first two terms since lemma 2.13 shows they are
independent. The second term is just the log of an exponential so its variance is known to be
x3/6. Moreover, the variance of the first term is bounded by (log(1 — px))? = O(p}) so that the
third assertion follows trivially.
The fourth assertion is merely a restatement of lemma 2.17. ]
Proof of lemma 4.2: Notice that

2-6 (2rz)* 2 [ (2xz)*dz
wit) <= = / —_
Sl:,p‘ Ama(@)l < n i‘;ﬁ 14+ A(2x2)?™  nj, 1+ A(2xz)™™
The resuit now follows upon changing variable of integration to y = A!/?™2xz in the integral
above and verifying that

(2xz)* _ k k/am _ A/3m
0 T+ A(2rz)™ (1 - k/2m) (A(Zm _ k)) =0t .

Proof of Lemma 4.3: By Lemma 4.2 and since f € Lip(1) we have that, for n large,

3" {log f(k/2n) + O(log n/n)} W(w — &/2n)

k=-n+1

hn (@)

S log f(k/2n)W(w — k/2n) + (1 + A=1/3™)O(log n/n)
A=-n+41

B,(w) + (1+ AY2™)O(log n/n),
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so that it suffices to show sup,, |Ba(w)| < 3 |b,|. Indeed,

exp(thw) > :
B, = —
(w) 2n _Z z T7 AZra™ Z exp(i2xk(v — s)/2n)
v=— s=-n k=-n+1

_ 2\ b, exp(i2xiw)

X T (a0
< 3 e

=0

Proof of Lemma 4.4: A similar derivation to that used in deriving (A.10) in the proof of
Lemma 4.3, shows that

- 2 b exp(i2xvw)
hio(w) = 2un SXPAICTVY)
@= > 5 ATy

yv=—n

where {b,.} are the Fourier coefficients of log( K3, * f). This implies that
hn(w) = 2nW) .0 # log(Kaa * f)(w)

and hence by Lemmas 2.5, 2.6, and 4.2, we have that

sup A, (w)| < 2n sup

* f'(w)
T! W m.nllt

IA

sup|f'(w)|sup 7o )(1+A Yimo(1).

uniformly in A. But f' is bounded since f € Lip(1) is differentiable. Furthermore, since f > 0,
and is continuous, 1/f is bounded. ]
Proof of Lemma 4.5: The r.h.s. in 4.6 follows from the fact that (cf., e.g., the proof of Lemma
4.3)
- 2, b, exp(i27vw) 1
- , A- /3m
)= 3 Fagmym T JO(log n/n),

v=-n
Parseval's theorem, and the fact that (cf., e.g., Butaer and Nessel, 1971)
Y Ibf? = [|Dansr + h — hil = O(n~?)

ivi>n

whenever A € Lip(1). Finally, continuity of A(A) follows from a discrete version of Lebesgue'’s
dominated convergence theorem. [ ]
Proof of Lemma 4.6: From (4.4) and (4.5) we have that

Z am Z exp(i2xv(w — k/2n))
2n

3
Nt . 1+ A(2xp)3m

= 2 %%% (2—15 Z €kn exp(—i2ruk/2n))

hk=-n+1l

ha(@)

z": exp(i2xvw)B, o
1+ A(2xv)?™

y=-n
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Now, by Lemma 4.1

n

1 . }
i3 O Elanen)exp(=i2mu(k - j)/2n)
S hk=~-n+1

E|B..]!

il

O(n~') + O(log* n/n?) = O(n~?)

IA

uniformly in v.
On the other hand, by Parseval’s Theorem

. EB?,
/E{h..(W)’}dw Z T

) 1
= Oln 1)2_:" (1 + A(zxp)im)3

= O(n~')(1+ 7Y™

by bounding the sum by an integral and changing the variable of integration as in the proof of

Lemma 4.2. [
Proof of Theorem 4.7: Take 0 < s < 1 and divide up the 2n integers from —n + 1 to n intc
J =~ n'~* consecutive disjoint sets E; fromay + 1= —n + 1 to a3, a3 + 1 to ag, etc., each set of

length n’ or less. Let

A;n = E €kn

kEE,

,log*n log®n
EAJn=O(n i )=O<F>‘

Var(A4;n) < n°O(1) + n**O(log? n/n?) = O(n*),

1 <3< J. Then,

and

where O is uniform in j for 1 < 5 < J. Applying Markov's inequality to A?n we have that

O(n*) + O(log® n/n?-*)3

1/3+6 — »-1-36
P {14, > n1/3+¢} < 2 = O(n*~1-%)
and if 4, = maXig;<J IAjnI then
P{Aﬂ>'nl/,+6} < ZP{IAJ“I>nl/2+6}
3
-’O(ﬂ‘) — O(nl"n') = O(n—ld) — 0.

ni+3d — T 1438

Thus An = 0p(n'/3*4), for each § > 0. Now,

J
ha@) = D03 Walw - k/2n)eua

j=1 h€E;

i

ke E,

J
{W,.(w —a,/2n)A;n + Z (Walw — k/2n) — W,(w ~ a,/2n))q..}

1=1
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The first sum above, Si,, satisfies

J
Sin < A,su Wa(w — 2
1 n WPZ| (“’ aJ/ n)‘

1=1
< Ansup|Wa()lJ

— op(nl/2+6)o(nro-l)o(nl—l)

— Op(n1/2+6+ro—-)

and the second sum, Sj,, satisfies

J
Sin < DY Walw—k/2n) = Wa(w ~ a;/2n)eknl
1=1keE;
J 1]
< Zn—O(n""l) Z l€xn
=1 n ke E,
< Zow T Y ol

1 k€E,
= nO,(n‘*"")
— Op(nn+r,«l)
since 3, |exn] = Op(n) by Markov’s inequality. This proves the first assertion of the lemma.
An analogous argument proves the second. [ ]
Proof of Lemma 4.8: By the triangle inequality
da(hha) = da(h,ha +h})
< da(h,ha) +da(0,h)
and the result follows immediately from Lemmas 4.5 and 4.6 since Edy(h;,0) <
VEd(R;,0). ) =
Proof of Lemmsa 4.9: Apply Lemma A.8 to f and f,. The O, term follows since f, is
bounded in probability (Lemma 4.7). The expression in parentheses follows from Lemma 4.8. B

A.4 Chapter 7

Proof of Lemma 7.1: Since V = mod(U + a,1) ~ U{0,1) for all a whenever U ~ U(0,1), we

have that _
vt =FaAl a3

has the same distribution as _
F.AL2D,T37!

where D, is a diagonal matrix with entries exp{122Ug), ..., exp(i2xUn 1), U's iid U(0,1) so0 let
Y2 ! = FaAM?Dlrg™!

FaD.AMTR !

FaDaFo X371

[}

I

so that the covariance matrix of ’o"" given Dy, is given by

E{Yy ' (¥Q™")T(Da} = FaDa FaEaFaDuFa. (A.11)
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On the other hand, for any matrix A, = (a;i), Do AnDn = (a1 exp(i2%(U; ~ Us))) , and since
Eexp(i2x(U; — Ux)) = 1 only if ; = k and 0 otherwise, ED,A.D, = diag(4,), i.e., only the
diagonal survives premultiplying by D,, postmultiplying by D,,, and taking expectation. Thus,

taking expectation again in (A.11) yields

E{YO"_I(YOn_l)T} = TZdlag(FnEnTv:)Fn
= E:
where L¢ is as in Example 1 of circulants in Chapter 2. |
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Abstract

Suppose we observe a realization of size n of 8 Gaussian stationary sequence and we estimate
8y, a functional of the spectral density, by 6,. For example, 8; and 6. might be the true and
the empirical rate at which the process crosses a certain level. It is natural to ask: (i) can the
sampling distribution of §, be consistently estimated? and (ii), can a better estimator of 0
than 6, be constructed on the basis of §,7

In this paper we describe approaches which allow answering both questions affirmatively in
certain situations. The approach is based on resampling the data, i.e., using the original data to
specify a distribution from which new samples are drawn. In the first problem the data induce
an estimate of the spectral density f,. and the sampling distribution of §, under f,. is used to
estimate that under f. We establish results for esiimators of well-behaved functions of linear
functionals of the spectral density. In the second problem we pretend the data are circular so
that the periodogram of the data is a sufficient statistic and thus the conditional expectation of
6, is a better estimator. If the data are not really circular, this mechanism introduces bias but
the reduction in variance may be substantial enough to reduce the mean square error.
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